Digital Twin: A New Paradigm in The World of Consumer Experience

  • Authors

    • Helen. M Ph.D. (IFT) Research Scholar, VIT Business School, Vellore Institute of Technology, Vellore
    • Anil Verma Assistant Professor, VIT Business School, Vellore Institute of Technology, Vellore
    https://doi.org/10.14419/ffpfcd07

    Received date: July 20, 2025

    Accepted date: August 28, 2025

    Published date: August 31, 2025

  • Digital Twin, Bibliometric analysis, Systematic Literature Review, Topic modeling, marketing, consumer, DT, SLR
  • Abstract

    Digital Twin (DT), as a virtual representation of physical entities, has emerged as a pivotal technology in enhancing consumer experiences across various industries. The study aims to explore the diverse DT applications in fashion, consumer electronics, healthcare, and the food industry, identifying key trends, benefits, and challenges. Using Bibliometric analysis (R package & VOSviewer) and Systematic Literature Review with the research articles published from 2018 to 2024, the study examines DT research advancements. Additionally, Topic Modeling and sub-field trend analysis (year-on-year trends, proportions) were conducted using Python. Findings reveal a growing scholarly interest, particularly in DT’s integration with IoT, sustainability, and automation. Results highlight DT’s role in enabling real-time monitoring, predictive analytics, and enhanced user engagement across sectors. The study concludes that DT is a game-changer, driving innovation, optimizing operations, and fostering sustainability, ultimately reshaping consumer industries for the future.

  • References

    1. Ahmadi-Assalemi, G., Al-Khateeb, H., Maple, C., Epiphaniou, G., Alhaboby, Z. A., Alkaabi, S., & Alhaboby, D. (2020). Digital twins for precision healthcare. In Advanced Sciences and Technologies for Security Applications. https://doi.org/10.1007/978-3-030-35746-7_8
    2. Ariyachandra, M. R. M. F., & Wedawatta, G. (2023). DT Smart Cities for Disaster Risk Management: A Review of Evolving Concepts. In Sustainability (Switzerland) (Vol. 15, Issue 15). https://doi.org/10.3390/su151511910
    3. Attaran, M., & Celik, B. G. (2023). DT: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100165
    4. Awan, K. A., Din, I. U., Almogren, A., & Rodrigues, J. J. P. C. (2024). MediTwin: A Web 3.0-Integrated DT for Secure Patient-Centric Healthcare in the Metaverse. IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2024.3409845
    5. Baker, J., Nam, K., & Dutt, C. S. (2023). A user experience perspective on heritage tourism in the Metaverse: Empirical evidence and design dilemmas for VR. Information Technology and Tourism, 25(3). https://doi.org/10.1007/s40558-023-00256-x
    6. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4–5). https://doi.org/10.7551/mitpress/1120.003.0082
    7. Broo, D. G., & Schooling, J. (2023). DT in infrastructure: definitions, current practices, challenges and strategies. International Journal of Construction Management, 23(7), 1254–1263. https://doi.org/10.1080/15623599.2021.1966980
    8. Cao, H., Garg, S., Mumtaz, S., Alrashoud, M., Yang, L., & Kaddoum, G. (2024). Softwarized Resource Allocation in DT-Empowered Networks for Future Quantum-Enabled Consumer Applications. IEEE Transactions on Consumer Electronics, 70(1), 800–810. https://doi.org/10.1109/TCE.2024.3370052
    9. Casciani, D., Chkanikova, O., & Pal, R. (2022). Exploring the nature of digital transformation in the fashion industry: opportunities for supply chains, business models, and sustainability-oriented innovations. Sustainability: Science, Practice, and Policy, 18(1), 773–795. https://doi.org/10.1080/15487733.2022.2125640
    10. Chung, K. C., & Tan, P. J. B. (2024). IoT-powered personalization: creating the optimal shopping experience in DT VFRs. Internet of Things (Netherlands), 26. https://doi.org/10.1016/j.iot.2024.101216
    11. Crofton, E. C., Botinestean, C., Fenelon, M., & Gallagher, E. (2019). Potential applications for virtual and augmented reality technologies in sensory science. In Innovative Food Science and Emerging Technologies (Vol. 56). https://doi.org/10.1016/j.ifset.2019.102178
    12. Da Silva, F. Q. B., Santos, A. L. M., Soares, S., Frana, A. C. C., Monteiro, C. V. F., & MacIel, F. F. (2011). Six years of Systematic Literature Reviews in software engineering: An updated tertiary study. In Information and Software Technology (Vol. 53, Issue 9). https://doi.org/10.1016/j.infsof.2011.04.004
    13. Dieste, O., & Padau, A. G. (2007). Developing search strategies for detecting relevant experiments for systematic reviews. Proceedings - 1st International Symposium on Empirical Software Engineering and Measurement, ESEM 2007. https://doi.org/10.1109/ESEM.2007.39
    14. Doerr, J., Kalmar, R., Rauch, B., & Stiene, S. (2022). Data Spaces in Agriculture. In VDI Berichte (Vol. 2022, Issue 2395). https://doi.org/10.51202/9783181023952-511
    15. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
    16. Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003
    17. Fuentes, S., Summerson, V., & Viejo, C. G. (2023). Novel digital technologies to assess smoke taint in berries and wines due to bushfires. BIO Web of Conferences, 56. https://doi.org/10.1051/bioconf/20235601007
    18. Fuentes, S., Tongson, E., & Gonzalez Viejo, C. (2024). Artificial intelligence and Big Data revolution in the agrifood sector. In Food Industry 4.0: Emerging Trends and Technologies in Sustainable Food Production and Consumption. https://doi.org/10.1016/B978-0-443-15516-1.00009-8
    19. Fukawa, N., & Rindfleisch, A. (2023). Enhancing innovation via the digital twin. Journal of Product Innovation Management, 40(4). https://doi.org/10.1111/jpim.12655
    20. Gong, X., Wang, Y., Xu, J., Chi, C., & Wang, Z. (2022). Ray Tracing -driven System of Virtual Fitting Based on Trustworthy Identification of IIoT. Chinese Control Conference, CCC, 2022-July, 5780–5787. https://doi.org/10.23919/CCC55666.2022.9902193
    21. Grieves, M., Vickers, J., 2016. Origins of the Digital Twin Concept. https://doi.org/10.13140/RG.2.2.26367.61609
    22. Guidani, B., Ronzoni, M., & Accorsi, R. (2024). Virtual agri-food supply chains: A holistic DT for sustainable food ecosystem design, control and transparency. Sustainable Production and Consumption, 46, 161–179. https://doi.org/10.1016/j.spc.2024.01.016
    23. Huang, X., Zhang, Y., Qi, Y., Huang, C., & Hossain, M. S. (2024). Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for DT-Empowered Consumer Electronics Industry. IEEE Transactions on Consumer Electronics, 70(1), 2145–2154. https://doi.org/10.1109/TCE.2024.3372785
    24. Hwang, M. S., & Lee, H. (2022). Pipeline Design for Efficient Visual Effects Production. Journal of Multimedia Information System, 9(3). https://doi.org/10.33851/jmis.2022.9.3.219
    25. Jayalakshmi, I., Vasanthi, D., & Perumal, V. V. (2024). Digital Twin Contribution in Integrated Processes of Fashion and Textile Supply Chains. In Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Design of Next-Generation Fashion (pp. 573-599). Cham: Springer Nature Switzerland.
    26. Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the DT: A Systematic Literature Review. CIRP Journal of Manufacturing Science and Technology, 29. https://doi.org/10.1016/j.cirpj.2020.02.002
    27. Kaur, R. (2024). Sustainable Food Revolution: The industry 5.0-Permission Marketing Convergence. International Journal of Multidisciplinary Research in Arts, Science and Technology, 2(11), 11-20.
    28. Kulkarni, C., Quraishi, A., Raparthi, M., Shabaz, M., Khan, M. A., Varma, R. A., Keshta, I., Soni, M., & Byeon, H. (2024). Hybrid disease prediction approach leveraging DT and Metaverse technologies for health consumer. BMC Medical Informatics and Decision Making, 24(1). https://doi.org/10.1186/s12911-024-02495-2
    29. Kumar, H., Rauschnabel, P. A., Agarwal, M. N., Singh, R. K., & Srivastava, R. (2024). Towards a theoretical framework for augmented reality marketing: A means-end chain perspective on retailing. Information and Management, 61(2). https://doi.org/10.1016/j.im.2023.103910
    30. Kuzmichev, V., & Yan, J. (2022). The Application of DT in the Field of Fashion. In DT: Basics and Applications. https://doi.org/10.1007/978-3-031-11401-4_6
    31. Lee, J., Kim, H., & Kron, F. (2024). Virtual education strategies in the context of sustainable health care and medical education: A topic modeling analysis of four decades of research. Medical Education, 58(1). https://doi.org/10.1111/medu.15202
    32. Liu, W., Xu, X., Qi, L., Zhou, X., Yan, H., Xia, X., & Dou, W. (2024). DT-Assisted Edge Service Caching for Consumer Electronics Manufacturing. IEEE Transactions on Consumer Electronics, 70(1), 3141–3151. https://doi.org/10.1109/TCE.2024.3357136
    33. Melesse, T. Y., Bollo, M., Di Pasquale, V., & Riemma, S. (2022). DT for Inventory Planning of Fresh Produce. IFAC-PapersOnLine, 55(10), 2743–2748. https://doi.org/10.1016/j.ifacol.2022.10.134
    34. Mesquita, R. P., Leal, F., & De Queiroz, J. A. (2024). DT IN THE RETAIL INDUSTRY: A SYSTEMATIC LITERATURE REVIEW. International Journal of Simulation Modeling, 23(3), 424–434. https://doi.org/10.2507/IJSIMM23-3-690
    35. Meza, E. B. M., Souza, D. G. B. D., Copetti, A., Sobral, A. P. B., Silva, G. V., Tammela, I., & Cardoso, R. (2024). Tools, Technologies and Frameworks for DT in the Oil and Gas Industry: An In-Depth Analysis. Sensors, 24(19). https://doi.org/10.3390/s24196457
    36. Moufid, O., Praharaj, S., & Jarar Oulidi, H. (2024). Digital technologies in urban regeneration: A systematic review of literature. Journal of Urban Management. https://doi.org/10.1016/j.jum.2024.11.002
    37. Nikitina, M., & Chernukha, I. (2020). Personalized nutrition and “DT” of food. Potravinarstvo Slovak Journal of Food Sciences, 14, 264–270. https://doi.org/10.5219/1312
    38. Okoli, C. (2015). A guide to conducting a standalone Systematic Literature Review. Communications of the Association for Information Systems, 37(1). https://doi.org/10.17705/1cais.03743
    39. Okorie, I. E., & Akpanta, A. C. (2015). Threshold Excess Analysis of Ikeja Monthly Rainfall in Nigeria. International Journal of Statistics and Applications, 5(1).
    40. Onwude, D., Bahrami, F., Shrivastava, C., Berry, T., Cronje, P., North, J., Kirsten, N., Schudel, S., Crenna, E., Shoji, K., Shoji, K., & Defraeye, T. (2022). Physics-driven DT to quantify the impact of pre- and postharvest variability on the end quality evolution of orange fruit. Resources, Conservation and Recycling, 186. https://doi.org/10.1016/j.resconrec.2022.106585
    41. Onwude, D., Cronje, P., North, J., & Defraeye, T. (2024). Digital replica to unveil the impact of growing conditions on orange postharvest quality. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-65285-w
    42. Paul, J., Ueno, A., Dennis, C., Alamanos, E., Curtis, L., Foroudi, P., Kacprzak, A., Kunz, W. H., Liu, J., Marvi, R., Tyagi, S., & Wirtz, J. (2024). Digital transformation: A multidisciplinary perspective and future research agenda. International Journal of Consumer Studies, 48(2). https://doi.org/10.1111/ijcs.13015
    43. Petrov, P., & Atanasova, T. (2021). DT with Application of AR and VR in Livestock Instructions. PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 77. https://doi.org/10.7546/pecr.77.21.05
    44. Pizana, J. M., Cirio, G., Nicas, A., & Rodriguez, A. (2024). Seeking Efficiency for the Accurate Draping of Digital Garments in Production. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2024.3430858
    45. Popescu, D., Dragomir, M., Popescu, S., & Dragomir, D. (2022). Building Better Digital Twins for Production Systems by Incorporating Environmental Related Functions—Literature Analysis and Determining Alternatives. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178657
    46. Ramu, S. P., Srivastava, G., Chengoden, R., Victor, N., Maddikunta, P. K. R., & Gadekallu, T. R. (2024). The Metaverse for Cognitive Health: A Paradigm Shift. IEEE Consumer Electronics Magazine, 13(3), 73–79. https://doi.org/10.1109/MCE.2023.3289034
    47. Riedelsheimer, T., Dorfhuber, L., & Stark, R. (2020). User centered development of a DT concept with focus on sustainability in the clothing industry. Procedia CIRP, 90, 660–665. https://doi.org/10.1016/j.procir.2020.01.123
    48. Rojek, I., Mikołajewski, D., & Dostatni, E. (2021). Digital twins in product lifecycle for sustainability in manufacturing and maintenance. Applied Sciences (Switzerland), 11(1). https://doi.org/10.3390/app11010031
    49. Sai, S., Prasad, M., Garg, A., & Chamola, V. (2024). Synergizing DT and Metaverse for Consumer Health: A Case Study Approach. IEEE Transactions on Consumer Electronics, 70(1), 2137–2144. https://doi.org/10.1109/TCE.2024.3367929
    50. Sai, S., Prasad, M., Upadhyay, A., Chamola, V., & Herencsar, N. (2024). Confluence of DT and Metaverse for Consumer Electronics: Real World Case Studies. IEEE Transactions on Consumer Electronics, 70(1), 3194–3203. https://doi.org/10.1109/TCE.2024.3351441
    51. Sai, S., Rastogi, A., & Chamola, V. (2023). DT for Consumer Electronics. IEEE Consumer Electronics Magazine. https://doi.org/10.1109/MCE.2023.3322013
    52. Sasikumar, A., Ravi, L., Devarajan, M., Vairavasundaram, S., Kotecha, K., & Herencsar, N. (2024). Sustainable Electronics: A Blockchain-Empowered DT-Based Governance System for Consumer Electronic Products. IEEE Transactions on Consumer Electronics, 70(2), 4968–4975. https://doi.org/10.1109/TCE.2024.3394512
    53. Scholz, J., & Smith, A. N. (2016). Augmented reality: Designing immersive experiences that maximize consumer engagement. Business Horizons, 59(2). https://doi.org/10.1016/j.bushor.2015.10.003
    54. Selvarajan, S., & Manoharan, H. (2024). DT and IoT for Smart City Monitoring. In Learning Techniques for the Internet of Things. https://doi.org/10.1007/978-3-031-50514-0_7
    55. Shah, I. A., Sial, Q., Jhanjhi, N. Z., & Gaur, L. (2022). The role of the IoT and DT in the healthcare digitalization process: IoT and DT in the healthcare digitalization process. In DT and Healthcare: Trends, Techniques, and Challenges. https://doi.org/10.4018/978-1-6684-5925-6.ch002
    56. Stephanie, V., Khalil, I., & Atiquzzaman, M. (2024). DSFL: A Decentralized SplitFed Learning Approach for Healthcare Consumers in the Metaverse. IEEE Transactions on Consumer Electronics, 70(1), 2107–2115. https://doi.org/10.1109/TCE.2024.3360994
    57. Taneja, A., & Rani, S. (2024). DT Empowered Approach for Sustainable IoT in Consumer Electronics Health: A Use Case. IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2024.3417524
    58. Udugama, I. A., Kelton, W., & Bayer, C. (2023). DT in food processing: A conceptual approach to developing multi-layer digital models. Digital Chemical Engineering, 7. https://doi.org/10.1016/j.dche.2023.100087
    59. van Dinter, R., Tekinerdogan, B., & Catal, C. (2021). Automation of Systematic Literature Reviews: A Systematic Literature Review. In Information and Software Technology (Vol. 136). https://doi.org/10.1016/j.infsof.2021.106589
    60. van Hegelsom, J. (2021). Development of a 3D DT of the Swalmen Tunnel in the Rijkswaterstaat Project. BSc Thesis Eindhoven University of Technology.
    61. Wang, Y., Su, Z., Guo, S., Dai, M., Luan, T. H., & Liu, Y. (2023). A Survey on DT: Architecture, Enabling Technologies, Security and Privacy, and Future Prospects. IEEE Internet of Things Journal, 10(17). https://doi.org/10.1109/JIOT.2023.3263909
    62. Wang, Y., Thaker, K., Hui, V., Brusilovsky, P., He, D., Donovan, H., & Lee, Y. J. (2024). Utilizing DT to Create Personas Representing Ovarian Cancer Patients and Their Families. In Studies in Health Technology and Informatics (Vol. 315). https://doi.org/10.3233/SHTI240314
    63. Yang, H. (2024). The Genesis Effect: Digital Goods in the Metaverse. Journal of Consumer Research, 51(1), 129–139. https://doi.org/10.1093/jcr/ucad072
  • Downloads

  • How to Cite

    M, H., & Verma , A. . (2025). Digital Twin: A New Paradigm in The World of Consumer Experience. International Journal of Accounting and Economics Studies, 12(4), 800-809. https://doi.org/10.14419/ffpfcd07