Integrating Biodiverse Silvopastoral Systems with Tax Law and Digital Technologies: Impacts on Welfare, Productivity, and Conservation in Tropical Livestock Systems
-
https://doi.org/10.14419/m8dzhz43
Received date: June 30, 2025
Accepted date: July 6, 2025
Published date: July 12, 2025
-
Silvopastoral Systems; Tropical Livestock; Animal Welfare; Biodiversity Conservation; Tax Incentives; Precision Agriculture; Digital Technologies -
Abstract
Biodiverse Silvopastoral Systems (BSSPs) offer a sustainable alternative for tropical livestock production by integrating trees, shrubs, and forage species with grazing animals. This study evaluated the impacts of BSSPs on productivity, animal welfare, and biodiversity in the Ecuadorian Amazon and examined how digital technologies and tax incentives can support their adoption. Data were collected from farms with varying levels of biodiversity integration and digital technology use. BSSPs increased milk yield to 10.1 L/cow/day, nearly 50% higher than conventional systems (6.8 L/day), and improved carcass weights by 14%. Despite lower stocking rates, net income per hectare was up to 28% higher, driven by improved animal performance and reduced veterinary costs. Animal welfare indicators also improved significantly. BSSP cattle exhibited lower body temperatures (38.3 °C vs. 39.1 °C) and respiration rates, associated with reduced thermal stress due to increased shrub cover (up to 42%) and canopy density, lowering the Temperature-Humidity Index (THI) below critical thresholds. Ecologically, BSSPs supported up to 21 tree species and doubled the Shannon Diversity Index (2.76 vs. 1.05) compared to monoculture systems. Digital tools—such as GPS collars, rumen sensors, and drones—were more commonly used in BSSPs, enhancing monitoring and management capacity. However, connectivity limitations and limited awareness of fiscal benefits still constrain broader adoption. This study highlights the potential of aligning agroecological practices with digital innovation and fiscal policy to transform tropical livestock systems. Promoting BSSPs through targeted tax incentives and precision technologies can simultaneously improve productivity, animal welfare, and ecosystem services.
-
References
- Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601.
- Akash, Hoque, M., Mondal, S., & Adusumilli, S. (2022). Sustainable livestock production and food security. In Emerging Issues in Climate Smart Livestock Production: Biological Tools and Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-12-822265-2.00011-9.
- Améndola, L., Solorio, F. J., Ku-Vera, J. C., Améndola-Massioti, R. D., Zarza, H., Mancera, K. . F., & Galindo, F. (2019). animal A pilot study on the foraging behaviour of heifers in intensive silvopastoral and monoculture systems in the tropics. Animal, 13: 606-616. https://doi.org/10.1017/S1751731118001532.
- Andersen, E., Elbersen, B., Godeschalk, F., Verhoog, D., Shukla, R., Agarwal, A., Sachdeva, K., Kurths, J., & Joshi, P. K. (2019). Farm manage-ment indicators and farm typologies as a basis for assessments in a changing policy environment. Journal of Environmental Management, 82(1) , 103–119. https://doi.org/10.1016/j.jenvman.2006.04.021.
- Ansong, J. D., Asamoah, M. K., Agyekum, B., & Nketiah-Amponsah, E. (2024). The influence of education on addressing the challenges of taxa-tion and cocoa revenue mobilization in Ghana. Social Sciences and Humanities Open, 10(August), 101098. https://doi.org/10.1016/j.ssaho.2024.101098.
- Baldassini, P., Despósito, C., Piñeiro, G., & Paruelo, J. M. (2018). Silvopastoral systems of the Chaco forests: Effects of trees on grass growth. Journal of Arid Environments, 156(April 2017), 87–95. https://doi.org/10.1016/j.jaridenv.2018.05.008.
- Bussoni, A., Alvarez, J., Cubbage, F., Ferreira, G., & Picasso, V. (2019). Diverse strategies for integration of forestry and livestock production. Ag-roforestry Systems, 93(1), 333–344. https://doi.org/10.1007/s10457-017-0092-7.
- Castle, S. E., Miller, D. C., Merten, N., Ordonez, P. J., & Baylis, K. (2022). Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: a systematic map. Environmental Evidence, 11(1), 1–27. https://doi.org/10.1186/s13750-022-00260-4.
- Dablin, L., Lewis, S. L., Milliken, W., Monro, A., & Lee, M. A. (2021). Browse from three tree legumes increases forage production for cattle in a silvopastoral system in the southwest Amazon. Animals, 11, 3585. https://doi.org/10.3390/ani11123585.
- de Figueiredo, E. ., Jayasundara, S., de Oliveira Bordonal, R., Berchielli, T. ., Reis, R. ., Wagner-Riddle, C., & La Scala, N. (2017). Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, 142:420-431. https://doi.org/10.1016/j.jclepro.2016.03.132.
- Ezalia, E., R, I. E., Elizabeth, G., My, W. A. N. H., Norhanim, A., & Wahidah, A. (2020). Farming Statistics: with Rural Business Research. In De-partment for Environment Food & Rural Affairs (Vol. 21, Issue 1). https://doi.org/10.1155/2010/706872.
- Flores-coello, G., Hern, J. ., Ku-vera, J., Diaz, D., Solorio-s, F. ., Sarabia-salgado, L., & Galindo, F. (2023). Intensive Silvopastoral Systems Miti-gate Enteric Methane Emissions from Cattle. Atmosphere, 14,863. https://doi.org/10.3390/atmos14050863.
- Fuentes, O. ., Guamán, S. ., Zacarías, F., & Paredes, V. (2023). Silvopastoral Systems as a Strategy for Reconversion of Livestock Farming in Ec-uadorian Amazon. Advanced Composites Bulletin, 1:135-138.
- Geng, W., Liu, L., Zhao, J., Kang, X., & Wang, W. (2024). Digital Technologies Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach. Sustainability (Switzerland) , 16(11). https://doi.org/10.3390/su16114431.
- Giro, A., Pezzopane, J. R. M., Barioni Junior, W., Pedroso, A. de F., Lemes, A. P., Botta, D., Romanello, N., Barreto, A. do N., & Garcia, A. R. (2019). Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Science of the Total Environment, 684:587-596. https://doi.org/10.1016/j.scitotenv.2019.05.377.
- Goncearuc, A., De Cauwer, C., Sapountzoglou, N., Kriekinge, G. Van, Huber, D., Messagie, M., & Coosemans, T. (2024). The barriers to wide-spread adoption of vehicle-to-grid: A comprehensive review. Energy Reports, 12(May), 27–41. https://doi.org/10.1016/j.egyr.2024.05.075.
- González-Quintero, R., Kristensen, T., Sánchez-Pinzón, M. ., Bolívar-Vergara, D. ., Chirinda, N., Arango, J., Pantevez, H., Barahona-Rosales, R., & Knudsen, M. . (2021). Carbon footprint, non-renewable energy and land use of dual-purpose cattle systems in Colombia using a life cycle assess-ment approach. Livestock Science, 244(November). https://doi.org/10.1016/j.livsci.2020.104330.
- Guamán-Rivera, S. ., Carrillo Riofrío, F. ., Jativa-Brito, M. ., Chuqui-Puma, L. ., Soldado, G. ., Andrade Cabezas, L. ., Quispe Sanchez, H. ., Na-ranjo Mira, J. ., Casierra Cardenas, A. ., Santillán Aguirre, J. ., & Congo-Yépez, C. . (2025). Carbon footprint assessment of livestock farms under tropical conditions : first approximation. Brazilian Journal of Biology, 85, e293349. https://doi.org/10.1590/1519-6984.293349.
- Guamán-Rivera, S. ., Herrera-Feijoo, R. ., Velepucha-Caiminagua, H. ., Avalos-Peñafiel, V. ., Aguilar-Miranda, G. ., Melendres-Medina, E. ., Ba-quero-Tapia, M. ., Cajamarca Carrazco, D. ., Fernández-Vinueza, D. ., Montero-Arteaga, A. ., & Zambrano Cedeño, J. . (2024a). Silvopastoral sys-tems as a tool for recovering degraded pastures and improving animal thermal comfort indexes in Northern Ecuador. Brazilian Journal of Biology, 84:e286137. https://doi.org/10.1590/1519-6984.286137.
- Guamán-Rivera, S. A., Herrera-Feijoo, R. ., Velepucha-Caiminagua, H. J., Avalos-Peñafiel, V. ., Aguilar-Miranda, G. ., Melendres-Medina, E. ., Baquero-Tapia, M. ., Cajamarca Carrazco, D. ., Fernández-Vinueza, D. ., Montero-Arteaga, A. ., & Zambrano Cedeño, J. . (2024b). Silvopastoral systems as a tool for recovering degraded pastures and improving animal thermal comfort indexes in Northern Ecuador. Brazilian Journal of Biolo-gy, 84:e286137. https://doi.org/10.1590/1519-6984.286137.
- Hazwan, M., Ghazali, M., Azmin, A., & Rahiman, W. (2022). Drone Implementation in Precision Agriculture – A Survey. International Journal of Emerging Technology and Advanced Engineering, 04: 67-77. https://doi.org/10.46338/ijetae0422_10.
- Huertas, S. M., Bobadilla, P. E., Alcántara, I., Akkermans, E., & van Eerdenburg, F. J. C. M. (2021). Benefits of silvopastoral systems for keeping beef cattle. Animals, 11(4), 1–12. https://doi.org/10.3390/ani11040992.
- Hyland, J., Jones, D., & Chadwick, D. (2014). Comparing nitrous oxide emissions from white clover-ryegrass pasture with swards receiving applied synthetic fertilizer. In EGF at 50: The Future of European Grassland (Vol. 19, Issue 1). http://edepot.wur.nl/333318#page=152.
- Khanna, M., & Zilberman, D. (1997). Incentives, precision technology and environmental protection. Ecological Economics, 23(1), 25–43. https://doi.org/10.1016/S0921-8009(96)00553-8.
- Kovalchuk, I., Melnyk, V., Novak, T., & Pakhomova, A. (2021). Legal regulation of agricultural taxation. European Journal of Sustainable Devel-opment, 10(1), 479–494. https://doi.org/10.14207/ejsd.2021.v10n1p479.
- Kovalchuk, S., & Kravchuk, A. (2019). Ukraine in “Green” Transformations of the Agricultural Sector of Eastern Partnership Countries: Challenges and Opportunities. Economic Innovations, 21, 43–58. https://doi.org/10.31520/ei.2019.21.2(71).43-58.
- Krawczyk, J. B., Lifran, R., & Tidball, M. (2005). Use of coupled incentives to improve adoption of environmentally friendly technologies. Journal of Environmental Economics and Management, 49(2), 311–329. https://doi.org/10.1016/j.jeem.2004.04.007.
- Lechón Sánchez, W. (2023). Acción frente al cambio climático: gobernanza multinivel de los gobiernos subnacionales y locales en Ecuador. Estado & Comunes, 1(16), 39–59. https://doi.org/10.37228/estado_comunes.v1.n16.2023.287.
- Lima, M. A., Paciullo, D. S. C., Silva, F. F., Morenz, M. J. F., Gomide, C. A. M., Rodrigues, R. A. R., Bretas, I. L., & Chizzotti, F. H. M. (2019). Evaluation of a long-established silvopastoral Brachiaria decumbens system: Plant characteristics and feeding value for cattle. Crop and Pasture Science, 70(9), 814–825. https://doi.org/10.1071/CP19027.
- Martínez-salinas, A., Villanueva, C., Jiménez-trujillo, J. A., Betanzos-simon, J. E., Pérez, E., Ibrahim, M., & L, C. J. S. (2024). The carbon footprint of livestock farms under conventional management and silvopastoral systems in Jalisco , Chiapas , and Campeche ( Mexico ). May, 1–12. https://doi.org/10.3389/fsufs.2024.1363994.
- Martínez, J., Cajas, Y. S., León, J. D., & Osorio, N. W. (2014). Silvopastoral Systems Enhance Soil Quality in Grasslands of Colombia. Applied and Environmental Soil Science, 2014, 359736. https://doi.org/10.1155/2014/359736.
- Mauricio, R. M., Ribeiro, R. S., Paciullo, D. S. C., Cangussú, M. A., Murgueitio, E., Chará, J., & Estrada, M. X. F. (2019). Silvopastoral Systems in Latin America for Biodiversity, Environmental, and Socioeconomic Improvements (G. Lemaire, P. C. D. F. Carvalho, S. Kronberg, & S. B. T.-A. D. Recous (eds.); pp. 287–297). Academic Press. https://doi.org/10.1016/B978-0-12-811050-8.00018-2.
- Mayerfeld, D., Keeley, K. O., Rickenbach, M., Rissman, A., & Ventura, S. J. (2023). Evolving conceptions of silvopasture among farmers and nat-ural resource professionals in Wisconsin, USA. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.1016/B978-0-12-811050-8.00018-2.
- Montagnini, F., Ibrahim, M., & Murgueitio Restrepo, E. (2013). Silvopastoral systems and climate change mitigation in Latin America. Bois et Forets Des Tropiques, 67:3-16. https://doi.org/10.19182/bft2013.316.a20528.
- Moriya, É. A. S., Imai, N. N., Tommaselli, A. M. G., Berveglieri, A., Santos, G. H., Soares, M. A., Marino, M., & Reis, T. (2021). Detection and mapping of trees infected with citrus gummosis using UAV hyperspectral data. Computers and Electronics in Agriculture, 188. https://doi.org/10.1016/j.compag.2021.106298.
- Mosquera-Losada, M. ., & Rigueiro-Rodriguez. (2005). Silvopastoralism and Sustainable Land Management. CABI Publishing. Proceedings of an International Congress on Silvopastoralism and Sustainable Management. https://doi.org/10.1079/9781845930011.0114.
- Murgueitio, E. R., Chará, J. O., Barahona, R. R., Cuartas, C. C., & Naranjo, J. R. (2014). Intensive Silvopastoral Systems (ISPS), mitigation and adaptation tool to climate change. Tropical and Subtropical Agroecosystems, 17:501-507.
- Neethirajan, S. (2024). Innovative Strategies for Sustainable Dairy Farming in Canada amidst Climate Change. Sustainability, 16(1). https://doi.org/10.3390/su16010265.
- Omurgazieva, N., Tilekeeva, B., Bekkozhaeva, A., Chanachev, N., & Cholponkulov, T. (2024). Impact of tax policy on the development of agrarian enterprises and organisations. Ekonomika APK, 31(3), 34–44. https://doi.org/10.32317/2221-1055.2024030.34.
- Onyeaka, H., Duan, K., Miri, T., Pang, G., Shiu, E., Pokhilenko, I., Ögtem-Young, Ö., Jabbour, L., Miles, K., Khan, A., Foyer, C. H., Frew, E., Fu, L., & Osifowora, B. (2024). Achieving fairness in the food system. Food and Energy Security, 13(4), 1–16. https://doi.org/10.1002/fes3.572.
- Park, J.-Y., & Son, J.-B. (2010). Transitioning toward Transdisciplinary Learning in a Multidisciplinary Environment. International Journal of Peda-gogies and Learning, 6(1), 82–93. https://doi.org/10.5172/ijpl.6.1.82.
- Payne, L., & Jesiek, B. (2018). Enhancing Transdisciplinary Learning through Community-Based Design Projects: Results from a Mixed Methods Study. International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship, 13(1), 1–52. https://doi.org/10.24908/ijsle.v13i1.11147.
- Peralta, A. V. P., Rivera, S. A. G., Tobar-Ruiz, M. G., Sánchez-Salazar, M. E., Oscullo, P. D. C., & Ñuste, L. F. M. (2024). Typology and charac-terization of the agricultural productive units in the NE Amazonian region of Ecuador. Journal of Advanced Veterinary and Animal Research, 11(1), 171–180. https://doi.org/10.5455/javar.2024.k762.
- Pezzopane, J. ., Macedo-Nicodemo, M. L. ., Bosi, C., Garcia, A. ., & Lulu, J. (2019). Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79:103-111. https://doi.org/10.1016/j.jtherbio.2018.12.015.
- Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Opazo, C. M., Owoo, N., Page, J. R., Prager, S. D., & Torero, M. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809–820. https://doi.org/10.1038/s41893-020-00617-y.
- Pinto, J., Bonacic, C., Hamilton-West, C., Romero, J., & Lubroth, J. (2008). Climate change and animal diseases in South America. OIE Revue Sci-entifique et Technique, 27(2), 599–613. https://doi.org/10.20506/rst.27.2.1813.
- Rajakovi, J., Mijailović, J., & Jovčić, V. R. (2025). The Normative Role of Tax and Financial Law in Promoting Sustainable Technological Solutions in the Agricultural Sector. Journal of Agronomy, Technology and Engineering Management, 8, 1459–1505.
- Robles-Rodríguez, R., Aguirre-Terrazas, L., Souza de Abreu, M. ., Villanueva-Najarro, C., & Flores-Mariazza, E. (2019). Degradación de pasturas y sistemas silvopastoriles predominantes en la Amazonía peruana. Agroind. Sci., 10(3), 235–239.
- Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate risk management climate change and livestock: im-pacts , adaptation, and mitigation. Climate Risk Management, 16:145-163. https://doi.org/10.1016/j.crm.2017.02.001.
- Rosales, R. B. (2014). The use of leguminous shrubs and trees as forages in tropical ruminant production systems. 2014. Seminario Taller Internac-ional: Manejo de la proteína en la Producción de Ganado Bovino.
- Sávio, D., Paciullo, C., Renato, C., Castro, T. De, Augusto, C., Gomide, D. M., Martins, R., Fátima, M. De, Pires, Á., Dias, M., & Ferreira, D. (2011). Performance of dairy heifers in a silvopastoral system. Livestock Science, 141:166-172. https://doi.org/10.1016/j.livsci.2011.05.012.
- Schahczenski, B. J. (2022). Agriculture , Climate Disruption , and Carbon Sequestration. Agricultural and Natural Resource Economist Published 2009.
- Scherr, S. J., Milder, J. C., & Shames, S. (2009). Paying for biodiversity conservation in agricultural landscapes. Agriculture, Biodiversity and Mar-kets: Livelihoods and Agroecology in Comparative Perspective, 229–252. https://doi.org/10.4324/9781849774376.
- Schwarz, D., Harrison, M. T., & Katsoulas, N. (2022). Greenhouse Gas Emissions Mitigation From Agricultural and Horticultural Systems. In Fron-tiers in Sustainable Food Systems (Vol. 6). https://doi.org/10.3389/fsufs.2022.842848.
- Silva-olaya, A. M., Olaya-montes, A., Polan, K. L., Duran-bautista, E. H., & Ortiz-morea, F. A. (2022). Silvopastoral Systems Enhance Soil Health in the Amazon Region. Sustainability, 1–18. https://doi.org/10.3390/su14010320.
- Thornton, P. K., & Gerber, P. J. (2010). Climate change and the growth of the livestock sector in developing countries. Mitigation and Adaptation Strategies for Global Change, 15:169-184. https://doi.org/10.1007/s11027-009-9210-9.
- Toulkeridis, T., Tamayo, E., Simón-Baile, D., Merizalde-Mora, M. ., Reyes -Yunga, D. ., Viera-Torres, M., & Heredia, M. (2020). Climate change according to ecuadorian academics-perceptions versus facts. Granja, 31:21-49. https://doi.org/10.17163/lgr.n31.2020.02.
- Vargas-tierras, Y. B., Prado-beltrán, J. K., Nicolalde-cruz, J. R., Casanoves, F., Virginio-filho, E. D. M., & Viera-arroyo, W. F. (2018). Characteri-zation and role of Amazonian fruit crops in family farms in the provinces of Sucumbíos and Orellana ( Ecuador ) Caracterización y rol de los fru-tales amazónicos en fincas familiares en las provincias de Sucumbíos y Orellana ( Ecuador ). 19,501-515. https://doi.org/10.21930/rcta.vol19_num3_art:812.
- Zhang, H., Wang, C., Turvey, S. ., & Sun, Z. (2020). Thermal infrared imaging from drones can detect individuals and nocturnal behavior of the world ’ s rarest primate. Global Ecology and Conservation, 23:e01101. https://doi.org/10.1016/j.gecco.2020.e01101.
- Zhang, S., Zhang, C., Cai, W., Bai, Y., Callaghan, M., Chang, N., Chen, B., Chen, H., Cheng, L., Dai, H., Dai, X., Fan, W., Fang, X., Gao, T., Geng, Y., Guan, D., Hu, Y., Hua, J., Huang, C., … Gong, P. (2023). The 2023 China report of the Lancet Countdown on health and climate change: taking stock for a thriving future. The Lancet Public Health, 8(12), e978–e995. https://doi.org/10.1016/S2468-2667(23)00245-1.
-
Downloads
-
How to Cite
Rivera , S. A. G. ., Cedillo , S. E. S. ., Jiménez , E. A. S. ., Regalado , M. B. P. ., Salgado , M. V. R. ., Lara , J. C. B. ., Paz , C. C. ., & Arias , D. F. M. . (2025). Integrating Biodiverse Silvopastoral Systems with Tax Law and Digital Technologies: Impacts on Welfare, Productivity, and Conservation in Tropical Livestock Systems. International Journal of Accounting and Economics Studies, 12(2), 478-484. https://doi.org/10.14419/m8dzhz43
