Integrating Biodiverse Silvopastoral Systems with Tax Law and Digital ‎Technologies: Impacts on Welfare, Productivity, and Conservation in Tropical ‎Livestock Systems

  • Authors

    • Santiago Alexander Guamán Rivera Universidad Autónoma de Barcelona, Grupo de Investigación en Rumiantes, Bellaterra, ‎España
    • Sandra Elizabeth Suarez Cedillo Escuela Superior Politécnica de Chimborazo, (ESPOCH)، Sede Orellana, El Coca, ‎Ecuador
    • Estefanía Alejandra Segarra Jiménez Escuela Superior Politécnica de Chimborazo, (ESPOCH)، Sede Orellana, El Coca, ‎Ecuador
    • María Belén Paredes Regalado Escuela Superior Politécnica de Chimborazo, (ESPOCH)، Sede Morona Santiago, ‎Ecuador
    • Myriam Valeria Ruiz Salgado Escuela Superior Politécnica de Chimborazo, (ESPOCH)، Riobamba, Ecuador
    • Julio Cesar Benavides Lara Independent researcher, Orellana, Ecuador
    • Carla Conrrado Paz Independent researcher, Orellana, Ecuador
    • Diego Fabian Maldonado Arias Independent researcher, Orellana, Ecuador
    https://doi.org/10.14419/m8dzhz43

    Received date: June 30, 2025

    Accepted date: July 6, 2025

    Published date: July 12, 2025

  • Silvopastoral Systems; Tropical Livestock; Animal Welfare; Biodiversity Conservation; Tax ‎Incentives; Precision Agriculture; Digital Technologies
  • Abstract

    Biodiverse Silvopastoral Systems (BSSPs) offer a sustainable alternative for tropical ‎livestock production by integrating trees, shrubs, and forage species with grazing ‎animals. This study evaluated the impacts of BSSPs on productivity, animal welfare, ‎and biodiversity in the Ecuadorian Amazon and examined how digital technologies and ‎tax incentives can support their adoption. Data were collected from farms with varying ‎levels of biodiversity integration and digital technology use. BSSPs increased milk yield ‎to 10.1 L/cow/day, nearly 50% higher than conventional systems (6.8 L/day), and ‎improved carcass weights by 14%. Despite lower stocking rates, net income per hectare ‎was up to 28% higher, driven by improved animal performance and reduced veterinary ‎costs. Animal welfare indicators also improved significantly. BSSP cattle exhibited ‎lower body temperatures (38.3 °C vs. 39.1 °C) and respiration rates, associated with ‎reduced thermal stress due to increased shrub cover (up to 42%) and canopy density, ‎lowering the Temperature-Humidity Index (THI) below critical thresholds. Ecologically, ‎BSSPs supported up to 21 tree species and doubled the Shannon Diversity Index (2.76 ‎vs. 1.05) compared to monoculture systems. Digital tools—such as GPS collars, rumen ‎sensors, and drones—were more commonly used in BSSPs, enhancing monitoring and ‎management capacity. However, connectivity limitations and limited awareness of fiscal ‎benefits still constrain broader adoption. This study highlights the potential of aligning ‎agroecological practices with digital innovation and fiscal policy to transform tropical ‎livestock systems. Promoting BSSPs through targeted tax incentives and precision ‎technologies can simultaneously improve productivity, animal welfare, and ecosystem ‎services‎.

  • References

    1. Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). ‎Application of digital technologies for ensuring agricultural productivity. Heliyon, ‎‎9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601.
    2. Akash, Hoque, M., Mondal, S., & Adusumilli, S. (2022). Sustainable livestock ‎production and food security. In Emerging Issues in Climate Smart Livestock ‎Production: Biological Tools and Techniques. Elsevier Inc. ‎ https://doi.org/10.1016/B978-0-12-822265-2.00011-9.
    3. Améndola, L., Solorio, F. J., Ku-Vera, J. C., Améndola-Massioti, R. D., Zarza, H., ‎Mancera, K. . F., & Galindo, F. (2019). animal A pilot study on the foraging ‎behaviour of heifers in intensive silvopastoral and monoculture systems in the ‎tropics. Animal, 13: 606-616. https://doi.org/10.1017/S1751731118001532.‎
    4. Andersen, E., Elbersen, B., Godeschalk, F., Verhoog, D., Shukla, R., Agarwal, A., ‎Sachdeva, K., Kurths, J., & Joshi, P. K. (2019). Farm manage-ment indicators and ‎farm typologies as a basis for assessments in a changing policy environment. ‎Journal of Environmental Management, 82(1) , 103–119. ‎ https://doi.org/10.1016/j.jenvman.2006.04.021.
    5. Ansong, J. D., Asamoah, M. K., Agyekum, B., & Nketiah-Amponsah, E. (2024). The ‎influence of education on addressing the challenges of taxa-tion and cocoa revenue ‎mobilization in Ghana. Social Sciences and Humanities Open, 10(August), 101098. ‎ https://doi.org/10.1016/j.ssaho.2024.101098.
    6. Baldassini, P., Despósito, C., Piñeiro, G., & Paruelo, J. M. (2018). Silvopastoral systems ‎of the Chaco forests: Effects of trees on grass growth. Journal of Arid ‎Environments, 156(April 2017), 87–95. ‎ https://doi.org/10.1016/j.jaridenv.2018.05.008.‎
    7. Bussoni, A., Alvarez, J., Cubbage, F., Ferreira, G., & Picasso, V. (2019). Diverse ‎strategies for integration of forestry and livestock production. Ag-roforestry ‎Systems, 93(1), 333–344. https://doi.org/10.1007/s10457-017-0092-7.
    8. Castle, S. E., Miller, D. C., Merten, N., Ordonez, P. J., & Baylis, K. (2022). Evidence ‎for the impacts of agroforestry on ecosystem services and human well-being in ‎high-income countries: a systematic map. Environmental Evidence, 11(1), 1–27. ‎ https://doi.org/10.1186/s13750-022-00260-4.
    9. Dablin, L., Lewis, S. L., Milliken, W., Monro, A., & Lee, M. A. (2021). Browse from ‎three tree legumes increases forage production for cattle in a silvopastoral system in ‎the southwest Amazon. Animals, 11, 3585. https://doi.org/10.3390/ani11123585.
    10. de Figueiredo, E. ., Jayasundara, S., de Oliveira Bordonal, R., Berchielli, T. ., Reis, R. ., ‎Wagner-Riddle, C., & La Scala, N. (2017). Greenhouse gas balance and carbon ‎footprint of beef cattle in three contrasting pasture-management systems in Brazil. ‎Journal of Cleaner Production, 142:420-431. ‎ https://doi.org/10.1016/j.jclepro.2016.03.132.
    11. Ezalia, E., R, I. E., Elizabeth, G., My, W. A. N. H., Norhanim, A., & Wahidah, A. ‎‎(2020). Farming Statistics: with Rural Business Research. In De-partment for ‎Environment Food & Rural Affairs (Vol. 21, Issue 1). ‎ https://doi.org/10.1155/2010/706872.
    12. Flores-coello, G., Hern, J. ., Ku-vera, J., Diaz, D., Solorio-s, F. ., Sarabia-salgado, L., & ‎Galindo, F. (2023). Intensive Silvopastoral Systems Miti-gate Enteric Methane ‎Emissions from Cattle. Atmosphere, 14,863.‎ https://doi.org/10.3390/atmos14050863.
    13. Fuentes, O. ., Guamán, S. ., Zacarías, F., & Paredes, V. (2023). Silvopastoral Systems as ‎a Strategy for Reconversion of Livestock Farming in Ec-uadorian Amazon. ‎Advanced Composites Bulletin, 1:135-138.‎
    14. Geng, W., Liu, L., Zhao, J., Kang, X., & Wang, W. (2024). Digital Technologies ‎Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach. ‎Sustainability (Switzerland) , 16(11). https://doi.org/10.3390/su16114431.
    15. Giro, A., Pezzopane, J. R. M., Barioni Junior, W., Pedroso, A. de F., Lemes, A. P., ‎Botta, D., Romanello, N., Barreto, A. do N., & Garcia, A. R. (2019). Behavior and ‎body surface temperature of beef cattle in integrated crop-livestock systems with or ‎without tree shading. Science of the Total Environment, 684:587-596. ‎ https://doi.org/10.1016/j.scitotenv.2019.05.377.
    16. Goncearuc, A., De Cauwer, C., Sapountzoglou, N., Kriekinge, G. Van, Huber, D., ‎Messagie, M., & Coosemans, T. (2024). The barriers to wide-spread adoption of ‎vehicle-to-grid: A comprehensive review. Energy Reports, 12(May), 27–41. https://doi.org/10.1016/j.egyr.2024.05.075.
    17. González-Quintero, R., Kristensen, T., Sánchez-Pinzón, M. ., Bolívar-Vergara, D. ., ‎Chirinda, N., Arango, J., Pantevez, H., Barahona-Rosales, R., & Knudsen, M. . ‎‎(2021). Carbon footprint, non-renewable energy and land use of dual-purpose ‎cattle systems in Colombia using a life cycle assess-ment approach. Livestock ‎Science, 244(November). https://doi.org/10.1016/j.livsci.2020.104330.‎
    18. Guamán-Rivera, S. ., Carrillo Riofrío, F. ., Jativa-Brito, M. ., Chuqui-Puma, L. ., ‎Soldado, G. ., Andrade Cabezas, L. ., Quispe Sanchez, H. ., Na-ranjo Mira, J. ., ‎Casierra Cardenas, A. ., Santillán Aguirre, J. ., & Congo-Yépez, C. . (2025). ‎Carbon footprint assessment of livestock farms under tropical conditions : first ‎approximation. Brazilian Journal of Biology, 85, e293349.‎ https://doi.org/10.1590/1519-6984.293349.
    19. Guamán-Rivera, S. ., Herrera-Feijoo, R. ., Velepucha-Caiminagua, H. ., Avalos-Peñafiel, ‎V. ., Aguilar-Miranda, G. ., Melendres-Medina, E. ., Ba-quero-Tapia, M. ., ‎Cajamarca Carrazco, D. ., Fernández-Vinueza, D. ., Montero-Arteaga, A. ., & ‎Zambrano Cedeño, J. . (2024a). Silvopastoral sys-tems as a tool for recovering ‎degraded pastures and improving animal thermal comfort indexes in Northern ‎Ecuador. Brazilian Journal of Biology, 84:e286137.‎ https://doi.org/10.1590/1519-6984.286137.
    20. Guamán-Rivera, S. A., Herrera-Feijoo, R. ., Velepucha-Caiminagua, H. J., Avalos-‎Peñafiel, V. ., Aguilar-Miranda, G. ., Melendres-Medina, E. ., Baquero-Tapia, M. ., ‎Cajamarca Carrazco, D. ., Fernández-Vinueza, D. ., Montero-Arteaga, A. ., & ‎Zambrano Cedeño, J. . (2024b). Silvopastoral systems as a tool for recovering ‎degraded pastures and improving animal thermal comfort indexes in Northern ‎Ecuador. Brazilian Journal of Biolo-gy, 84:e286137. https://doi.org/10.1590/1519-6984.286137.
    21. Hazwan, M., Ghazali, M., Azmin, A., & Rahiman, W. (2022). Drone Implementation in ‎Precision Agriculture – A Survey. International Journal of Emerging Technology ‎and Advanced Engineering, 04: 67-77. https://doi.org/10.46338/ijetae0422_10.
    22. Huertas, S. M., Bobadilla, P. E., Alcántara, I., Akkermans, E., & van Eerdenburg, F. J. ‎C. M. (2021). Benefits of silvopastoral systems for keeping beef cattle. Animals, ‎‎11(4), 1–12. https://doi.org/10.3390/ani11040992.
    23. Hyland, J., Jones, D., & Chadwick, D. (2014). Comparing nitrous oxide emissions from ‎white clover-ryegrass pasture with swards receiving applied synthetic fertilizer. In ‎EGF at 50: The Future of European Grassland (Vol. 19, Issue 1). ‎http://edepot.wur.nl/333318#page=152‎.
    24. Khanna, M., & Zilberman, D. (1997). Incentives, precision technology and ‎environmental protection. Ecological Economics, 23(1), 25–43. ‎ https://doi.org/10.1016/S0921-8009(96)00553-8.
    25. Kovalchuk, I., Melnyk, V., Novak, T., & Pakhomova, A. (2021). Legal regulation of ‎agricultural taxation. European Journal of Sustainable Devel-opment, 10(1), 479–‎‎494. https://doi.org/10.14207/ejsd.2021.v10n1p479.
    26. Kovalchuk, S., & Kravchuk, A. (2019). Ukraine in “Green” Transformations of the ‎Agricultural Sector of Eastern Partnership Countries: Challenges and ‎Opportunities. Economic Innovations, 21, 43–58. ‎ https://doi.org/10.31520/ei.2019.21.2(71).43-58.
    27. Krawczyk, J. B., Lifran, R., & Tidball, M. (2005). Use of coupled incentives to improve ‎adoption of environmentally friendly technologies. Journal of Environmental ‎Economics and Management, 49(2), 311–329. ‎ https://doi.org/10.1016/j.jeem.2004.04.007.
    28. Lechón Sánchez, W. (2023). Acción frente al cambio climático: gobernanza multinivel ‎de los gobiernos subnacionales y locales en Ecuador. Estado & Comunes, 1(16), ‎‎39–59. https://doi.org/10.37228/estado_comunes.v1.n16.2023.287.‎
    29. Lima, M. A., Paciullo, D. S. C., Silva, F. F., Morenz, M. J. F., Gomide, C. A. M., ‎Rodrigues, R. A. R., Bretas, I. L., & Chizzotti, F. H. M. (2019). Evaluation of a ‎long-established silvopastoral Brachiaria decumbens system: Plant characteristics ‎and feeding value for cattle. Crop and Pasture Science, 70(9), 814–825. ‎ https://doi.org/10.1071/CP19027.
    30. Martínez-salinas, A., Villanueva, C., Jiménez-trujillo, J. A., Betanzos-simon, J. E., Pérez, ‎E., Ibrahim, M., & L, C. J. S. (2024). The carbon footprint of livestock farms under ‎conventional management and silvopastoral systems in Jalisco , Chiapas , and ‎Campeche ( Mexico ). May, 1–12. https://doi.org/10.3389/fsufs.2024.1363994.‎
    31. Martínez, J., Cajas, Y. S., León, J. D., & Osorio, N. W. (2014). Silvopastoral Systems ‎Enhance Soil Quality in Grasslands of Colombia. Applied and Environmental Soil ‎Science, 2014, 359736. https://doi.org/10.1155/2014/359736.
    32. Mauricio, R. M., Ribeiro, R. S., Paciullo, D. S. C., Cangussú, M. A., Murgueitio, E., ‎Chará, J., & Estrada, M. X. F. (2019). Silvopastoral Systems in Latin America for ‎Biodiversity, Environmental, and Socioeconomic Improvements (G. Lemaire, P. C. ‎D. F. Carvalho, S. Kronberg, & S. B. T.-A. D. Recous (eds.); pp. 287–297). ‎Academic Press. https://doi.org/10.1016/B978-0-12-811050-8.00018-2.‎
    33. Mayerfeld, D., Keeley, K. O., Rickenbach, M., Rissman, A., & Ventura, S. J. (2023). ‎Evolving conceptions of silvopasture among farmers and nat-ural resource ‎professionals in Wisconsin, USA. Frontiers in Sustainable Food Systems, 7. ‎ https://doi.org/10.1016/B978-0-12-811050-8.00018-2.
    34. Montagnini, F., Ibrahim, M., & Murgueitio Restrepo, E. (2013). Silvopastoral systems ‎and climate change mitigation in Latin America. Bois et Forets Des Tropiques, ‎‎67:3-16. https://doi.org/10.19182/bft2013.316.a20528.
    35. Moriya, É. A. S., Imai, N. N., Tommaselli, A. M. G., Berveglieri, A., Santos, G. H., ‎Soares, M. A., Marino, M., & Reis, T. (2021). Detection and mapping of trees ‎infected with citrus gummosis using UAV hyperspectral data. Computers and ‎Electronics in Agriculture, 188. https://doi.org/10.1016/j.compag.2021.106298.
    36. Mosquera-Losada, M. ., & Rigueiro-Rodriguez. (2005). Silvopastoralism and ‎Sustainable Land Management. CABI Publishing. Proceedings of an International ‎Congress on Silvopastoralism and Sustainable Management. ‎ https://doi.org/10.1079/9781845930011.0114.
    37. Murgueitio, E. R., Chará, J. O., Barahona, R. R., Cuartas, C. C., & Naranjo, J. R. ‎‎(2014). Intensive Silvopastoral Systems (ISPS), mitigation and adaptation tool to ‎climate change. Tropical and Subtropical Agroecosystems, 17:501-507.‎
    38. Neethirajan, S. (2024). Innovative Strategies for Sustainable Dairy Farming in Canada ‎amidst Climate Change. Sustainability, 16(1). https://doi.org/10.3390/su16010265.
    39. Omurgazieva, N., Tilekeeva, B., Bekkozhaeva, A., Chanachev, N., & Cholponkulov, T. ‎‎(2024). Impact of tax policy on the development of agrarian enterprises and ‎organisations. Ekonomika APK, 31(3), 34–44. https://doi.org/10.32317/2221-1055.2024030.34.
    40. Onyeaka, H., Duan, K., Miri, T., Pang, G., Shiu, E., Pokhilenko, I., Ögtem-Young, Ö., ‎Jabbour, L., Miles, K., Khan, A., Foyer, C. H., Frew, E., Fu, L., & Osifowora, B. ‎‎(2024). Achieving fairness in the food system. Food and Energy Security, 13(4), 1–‎‎16. https://doi.org/10.1002/fes3.572.‎
    41. Park, J.-Y., & Son, J.-B. (2010). Transitioning toward Transdisciplinary Learning in a ‎Multidisciplinary Environment. International Journal of Peda-gogies and Learning, ‎‎6(1), 82–93. https://doi.org/10.5172/ijpl.6.1.82.
    42. Payne, L., & Jesiek, B. (2018). Enhancing Transdisciplinary Learning through ‎Community-Based Design Projects: Results from a Mixed Methods Study. ‎International Journal for Service Learning in Engineering, Humanitarian ‎Engineering and Social Entrepreneurship, 13(1), 1–52. ‎ https://doi.org/10.24908/ijsle.v13i1.11147.
    43. Peralta, A. V. P., Rivera, S. A. G., Tobar-Ruiz, M. G., Sánchez-Salazar, M. E., Oscullo, ‎P. D. C., & Ñuste, L. F. M. (2024). Typology and charac-terization of the ‎agricultural productive units in the NE Amazonian region of Ecuador. Journal of ‎Advanced Veterinary and Animal Research, 11(1), 171–180. ‎ https://doi.org/10.5455/javar.2024.k762.‎
    44. Pezzopane, J. ., Macedo-Nicodemo, M. L. ., Bosi, C., Garcia, A. ., & Lulu, J. (2019). ‎Animal thermal comfort indexes in silvopastoral systems with different tree ‎arrangements. Journal of Thermal Biology, 79:103-111. ‎ https://doi.org/10.1016/j.jtherbio.2018.12.015.
    45. Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Opazo, C. ‎M., Owoo, N., Page, J. R., Prager, S. D., & Torero, M. (2020). A scoping review on ‎incentives for adoption of sustainable agricultural practices and their outcomes. ‎Nature Sustainability, 3(10), 809–820. https://doi.org/10.1038/s41893-020-00617-y.
    46. Pinto, J., Bonacic, C., Hamilton-West, C., Romero, J., & Lubroth, J. (2008). Climate ‎change and animal diseases in South America. OIE Revue Sci-entifique et Technique, ‎‎27(2), 599–613. https://doi.org/10.20506/rst.27.2.1813.‎
    47. Rajakovi, J., Mijailović, J., & Jovčić, V. R. (2025). The Normative Role of Tax and ‎Financial Law in Promoting Sustainable Technological Solutions in the Agricultural ‎Sector. Journal of Agronomy, Technology and Engineering Management, 8, 1459–‎‎1505.‎
    48. Robles-Rodríguez, R., Aguirre-Terrazas, L., Souza de Abreu, M. ., Villanueva-Najarro, ‎C., & Flores-Mariazza, E. (2019). Degradación de pasturas y sistemas ‎silvopastoriles predominantes en la Amazonía peruana. Agroind. Sci., 10(3), 235–‎‎239.‎
    49. Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). ‎Climate risk management climate change and livestock: im-pacts , adaptation, and ‎mitigation. Climate Risk Management, 16:145-163. https://doi.org/10.1016/j.crm.2017.02.001.‎
    50. Rosales, R. B. (2014). The use of leguminous shrubs and trees as forages in tropical ‎ruminant production systems. 2014. Seminario Taller Internac-ional: Manejo de la ‎proteína en la Producción de Ganado Bovino.‎
    51. Sávio, D., Paciullo, C., Renato, C., Castro, T. De, Augusto, C., Gomide, D. M., Martins, ‎R., Fátima, M. De, Pires, Á., Dias, M., & Ferreira, D. (2011). Performance of dairy ‎heifers in a silvopastoral system. Livestock Science, 141:166-172. ‎ https://doi.org/10.1016/j.livsci.2011.05.012.
    52. Schahczenski, B. J. (2022). Agriculture , Climate Disruption , and Carbon Sequestration. ‎Agricultural and Natural Resource Economist Published 2009.‎
    53. Scherr, S. J., Milder, J. C., & Shames, S. (2009). Paying for biodiversity conservation in ‎agricultural landscapes. Agriculture, Biodiversity and Mar-kets: Livelihoods and ‎Agroecology in Comparative Perspective, 229–252. ‎ https://doi.org/10.4324/9781849774376.
    54. Schwarz, D., Harrison, M. T., & Katsoulas, N. (2022). Greenhouse Gas Emissions ‎Mitigation From Agricultural and Horticultural Systems. In Fron-tiers in Sustainable ‎Food Systems (Vol. 6). https://doi.org/10.3389/fsufs.2022.842848.
    55. Silva-olaya, A. M., Olaya-montes, A., Polan, K. L., Duran-bautista, E. H., & Ortiz-‎morea, F. A. (2022). Silvopastoral Systems Enhance Soil Health in the Amazon ‎Region. Sustainability, 1–18.‎ https://doi.org/10.3390/su14010320.
    56. Thornton, P. K., & Gerber, P. J. (2010). Climate change and the growth of the livestock ‎sector in developing countries. Mitigation and Adaptation Strategies for Global ‎Change, 15:169-184. https://doi.org/10.1007/s11027-009-9210-9.
    57. Toulkeridis, T., Tamayo, E., Simón-Baile, D., Merizalde-Mora, M. ., Reyes -Yunga, D. ., ‎Viera-Torres, M., & Heredia, M. (2020). Climate change according to ecuadorian ‎academics-perceptions versus facts. Granja, 31:21-49. ‎ https://doi.org/10.17163/lgr.n31.2020.02.‎
    58. Vargas-tierras, Y. B., Prado-beltrán, J. K., Nicolalde-cruz, J. R., Casanoves, F., Virginio-‎filho, E. D. M., & Viera-arroyo, W. F. (2018). Characteri-zation and role of ‎Amazonian fruit crops in family farms in the provinces of Sucumbíos and Orellana ( ‎Ecuador ) Caracterización y rol de los fru-tales amazónicos en fincas familiares en ‎las provincias de Sucumbíos y Orellana ( Ecuador ). 19,501-515.‎ https://doi.org/10.21930/rcta.vol19_num3_art:812.‎
    59. Zhang, H., Wang, C., Turvey, S. ., & Sun, Z. (2020). Thermal infrared imaging from ‎drones can detect individuals and nocturnal behavior of the world ’ s rarest ‎primate. Global Ecology and Conservation, 23:e01101. https://doi.org/10.1016/j.gecco.2020.e01101.
    60. Zhang, S., Zhang, C., Cai, W., Bai, Y., Callaghan, M., Chang, N., Chen, B., Chen, H., ‎Cheng, L., Dai, H., Dai, X., Fan, W., Fang, X., Gao, T., Geng, Y., Guan, D., Hu, ‎Y., Hua, J., Huang, C., … Gong, P. (2023). The 2023 China report of the Lancet ‎Countdown on health and climate change: taking stock for a thriving future. The ‎Lancet Public Health, 8(12), e978–e995. https://doi.org/10.1016/S2468-2667(23)00245-1.
  • Downloads

  • How to Cite

    Rivera , S. A. G. ., Cedillo , S. E. S. ., Jiménez , E. A. S. ., Regalado , M. B. P. ., Salgado , M. V. R. ., Lara , J. C. B. ., Paz , C. C. ., & Arias , D. F. M. . (2025). Integrating Biodiverse Silvopastoral Systems with Tax Law and Digital ‎Technologies: Impacts on Welfare, Productivity, and Conservation in Tropical ‎Livestock Systems. International Journal of Accounting and Economics Studies, 12(2), 478-484. https://doi.org/10.14419/m8dzhz43