Cryptocurrency Price Forecasting Using Machine Learning: Building Intelligent Financial Prediction Models
-
https://doi.org/10.14419/s0pktr58
Received date: June 20, 2025
Accepted date: July 15, 2025
Published date: July 26, 2025
-
Cryptocurrency Forecasting; LSTM Neural Networks; Market Liquidity; Machine Learning; VWAP; VVR. -
Abstract
Cryptocurrency markets are experiencing rapid growth, but this expansion comes with significant challenges, particularly in predicting cryptocurrency prices for traders in the U.S. In this study, we explore how deep learning and machine learning models can be used to forecast the closing prices of the XRP/USDT trading pair. While many existing cryptocurrency prediction models focus solely on price and volume patterns, they often overlook market liquidity, a crucial factor in price predictability. To address this, we introduce two important liquidity proxy metrics: the Volume-To-Volatility Ratio (VVR) and the Volume-Weighted Average Price (VWAP). These metrics provide a clearer understanding of market stability and liquidity, ultimately enhancing the accuracy of our price predictions. We developed four machine learning models, Linear Regression, Random Forest, XGBoost, and LSTM neural networks, using historical data without incorporating the liquidity proxy metrics, and evaluated their performance. We then retrained the models, including the liquidity proxy metrics, and reassessed their performance. In both cases (with and without the liquidity proxies), the LSTM model consistently outperformed the others. These results underscore the importance of considering market liquidity when predicting cryptocurrency closing prices. Therefore, incorporating these liquidity metrics is essential for more accurate forecasting models. Our findings offer valuable insights for traders and developers seeking to create smarter and more risk-aware strategies in the U.S. digital assets market.
-
References
- Al Montaser, M. A., Ghosh, B. P., Barua, A., Karim, F., Das, B. C., Shawon, R. E. R., & Chowdhury, M. S. R. (2025). Sentiment analysis of social media data: Business insights and consumer behavior trends in the USA. Edelweiss Applied Science and Technology, 9(1), 545–565. https://doi.org/10.55214/25768484.v9i1.4164.
- Amihud, Yakov (2002). “Illiquidity and stock returns: cross-section and time-series effects.” Journal of Financial Markets, 5(1), 31–56. https://doi.org/10.1016/S1386-4181(01)00024-6.
- Barberis, Nicholas; Shleifer, Andrei; Vishny, Robert (1998). “A Model of Investor Sentiment.” Journal of Financial Economics, 49(3), 307–343. PDF (NBER Working Paper): https://www.nber.org/papers/w5926.pdf.
- Bhowmik, P. K., Chowdhury, F. R., Sumsuzzaman, M., Ray, R. K., Khan, M. M., Gomes, C. A. H., ... & Gomes, C. A. (2025). AI-Driven Senti-ment Analysis for Bitcoin Market Trends: A Predictive Approach to Crypto Volatility. Journal of Ecohumanism, 4(4), 266–288. https://doi.org/10.62754/joe.v4i4.6729.
- Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of China stock market. IEEE International Conference on Big Data. https://doi.org/10.1109/BigData.2015.7364089.
- Chordia, T., Roll, R., & Subrahmanyam, A. (2005). Evidence on the speed of convergence to market efficiency. Journal of Financial Economics, 76(2), 271–292. https://doi.org/10.1016/j.jfineco.2004.06.004.
- Das, B. C., Sarker, B., Saha, A., Bishnu, K. K., Sartaz, M. S., Hasanuzzaman, M., ... & Khan, M. M. (2025). Detecting Cryptocurrency Scams in the USA: A Machine Learning-Based Analysis of Scam Patterns and Behaviors. Journal of Ecohumanism, 4(2), 2091–2111. https://doi.org/10.62754/joe.v4i2.6604.
- Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK Inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773.
- Foucault, T., Pagano, M., & Röell, A. (2013). Market Liquidity: Theory, Evidence, and Policy. Oxford University Press.
- Hasan, M. S., Siam, M. A., Ahad, M. A., Hossain, M. N., Ridoy, M. H., Rabbi, M. N. S., ... & Jakir, T. (2024). Predictive Analytics for Customer Retention: Machine Learning Models to Analyze and Mitigate Churn in E-Commerce Platforms. Journal of Business and Management Studies, 6(4), 304–320. https://doi.org/10.32996/jbms.2024.6.4.22.
- Hasanuzzaman, M., Hossain, M., Rahman, M. M., Rabbi, M. M. K., Khan, M. M., Zeeshan, M. A. F., ... & Kawsar, M. (2025). Understanding So-cial Media Behavior in the USA: AI-Driven Insights for Predicting Digital Trends and User Engagement. Journal of Ecohumanism, 4(4), 119–141. https://doi.org/10.62754/joe.v4i4.6717.
- Hossain, M. I., Khan, M. N. M., Fariha, N., Tasnia, R., Sarker, B., Doha, M. Z., ... & Siam, M. A. (2025). Assessing Urban-Rural Income Dispari-ties in the USA: A Data-Driven Approach Using Predictive Analytics. Journal of Ecohumanism, 4(4), 300–320. https://doi.org/10.62754/joe.v4i4.6733.
- Islam, M. R., Hossain, M., Alam, M., Khan, M. M., Rabbi, M. M. K., Rabby, M. F., ... & Tarafder, M. T. R. (2025). Leveraging Machine Learning for Insights and Predictions in Synthetic E-commerce Data in the USA: A Comprehensive Analysis. Journal of Ecohumanism, 4(2), 2394–2420. https://doi.org/10.62754/joe.v4i2.6635.
- Islam, M. S., Bashir, M., Rahman, S., Al Montaser, M. A., Bortty, J. C., Nishan, A., & Haque, M. R. (2025). Machine Learning-Based Cryptocur-rency Prediction: Enhancing Market Forecasting with Advanced Predictive Models. Journal of Ecohumanism, 4(2), 2498–2519. https://doi.org/10.62754/joe.v4i2.6663.
- Islam, M. Z., et al. (2025). Machine Learning-Based Detection and Analysis of Suspicious Activities in Bitcoin Wallet Transactions in the USA. Journal of Ecohumanism, 4(1), 3714–3734. https://doi.org/10.62754/joe.v4i1.6214.
- Jakir, T., Rabbi, M. N. S., Rabbi, M. M. K., Ahad, M. A., Siam, M. A., Hossain, M. N., ... & Hossain, A. (2023). Machine Learning-Powered Fi-nancial Fraud Detection: Building Robust Predictive Models for Transactional Security. Journal of Economics, Finance and Accounting Studies, 5(5), 161–180. https://doi.org/10.32996/jefas.2023.5.5.16.
- Kyle, Albert S. (1985). “Continuous Auctions and Insider Trading.” Econometrica, 53(6), 1315–1336. PDF: https://people.duke.edu/~qc2/BA532/1985%20EMA%20Kyle.pdf. https://doi.org/10.2307/1913210.
- Kyle, A. S., & Obizhaeva, A. A. (2016). Market microstructure invariance: Theory and empirical tests. Econometrica, 84(4), 1345–1404. https://doi.org/10.3982/ECTA10486.
- Kristjanpoller, W., & Minutolo, M. (2016). Forecasting volatility of oil prices using an artificial neural network-GARCH model. Expert Systems with Applications, 65, 233–241. https://doi.org/10.1016/j.eswa.2016.08.045.
- McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of Bitcoin using Machine Learning. 20th International Conference on Information Integration and Web-based Applications & Services. https://doi.org/10.1109/PDP2018.2018.00060.
- Mohaimin, M. R., Das, B. C., Akter, R., Anonna, F. R., Hasanuzzaman, M., Chowdhury, B. R., & Alam, S. (2025). Predictive Analytics for Tele-com Customer Churn: Enhancing Retention Strategies in the US Market. Journal of Computer Science and Technology Studies, 7(1), 30–45.
- Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. White Paper. https://doi.org/10.32996/jcsts.2025.7.1.3.
- Rana, M. S., Chouksey, A., Hossain, S., Sumsuzoha, M., Bhowmik, P. K., Hossain, M., ... & Zeeshan, M. A. F. (2025). AI-Driven Predictive Mod-eling for Banking Customer Churn: Insights for the US Financial Sector. Journal of Ecohumanism, 4(1), 3478–3497. https://doi.org/10.62754/joe.v4i1.6188.
- Rahman, M. S., Hossain, M. S., Rahman, M. K., Islam, M. R., Sumon, M. F. I., Siam, M. A., & Debnath, P. (2025). Enhancing Supply Chain Transparency with Blockchain: A Data-Driven Analysis of Distributed Ledger Applications. Journal of Business and Management Studies, 7(3), 59–77. https://doi.org/10.32996/jbms.2025.7.3.7.
- Ray, R. K., Sumsuzoha, M., Faisal, M. H., Chowdhury, S. S., Rahman, Z., Hossain, E., ... & Rahman, M. S. (2025). Harnessing Machine Learning and AI to Analyze the Impact of Digital Finance on Urban Economic Resilience in the USA. Journal of Ecohumanism, 4(2), 1417–1442. https://doi.org/10.62754/joe.v4i2.6515.
- Sebastiao, H., & Godinho, P. (2021). Forecasting and trading cryptocurrencies with machine learning under changing market conditions. Financial Innovation, 7(1), 1–30. https://doi.org/10.1186/s40854-020-00217-x.
- Shawon, R. E. R., Hasan, M. R., Rahman, M. A., Al Jobaer, M. A., Islam, M. R., Kawsar, M., & Akter, R. (2025). Designing and Deploying AI Models for Sustainable Logistics Optimization: A Case Study on Eco-Efficient Supply Chains in the USA. Journal of Ecohumanism, 4(2), 2143–2166. https://doi.org/10.62754/joe.v4i2.6610.
- Sizan, M. M. H., et al. (2025). Advanced Machine Learning Approaches for Credit Card Fraud Detection in the USA: A Comprehensive Analysis. Journal of Ecohumanism, 4(2), 883–905. https://doi.org/10.62754/joe.v4i2.6377.
- Sizan, M. M. H., et al. (2025). Bankruptcy Prediction for US Businesses: Leveraging Machine Learning for Financial Stability. Journal of Business and Management Studies, 7(1), 01–14. https://doi.org/10.32996/jbms.2025.7.1.1.
- Tsay, R. S. (2010). Analysis of Financial Time Series (Vol. 543). John Wiley & Sons. https://doi.org/10.1002/9780470644560.
- Tiwari, A. K., Jana, R. K., Das, D., & Roubaud, D. (2021). Forecasting Bitcoin returns using ARFIMA, GARCH and machine learning models: An application to the Covid-19 crisis. Research in International Business and Finance, 58, 101437.
-
Downloads
-
How to Cite
Islam, M. Z., Rahman, M. S., Sumsuzoha, M., Sarker, B., Islam, M. R., Alam, M., & Shil, S. K. (2025). Cryptocurrency Price Forecasting Using Machine Learning: Building Intelligent Financial Prediction Models. International Journal of Accounting and Economics Studies, 12(3), 255-268. https://doi.org/10.14419/s0pktr58
