Cryptocurrency Price Forecasting Using Machine Learning: ‎Building Intelligent Financial Prediction Models

  • Authors

    • Md Zahidul Islam MBA in Business Analytics, Gannon University, Erie, PA
    • Md Shafiqur Rahman MBA in Management Information Systems, International American University
    • Md Sumsuzoha Master of Science in Business Analytics, Trine University
    • Babul Sarker Master of Science in Business Analytics (MSBA)، Trine University, Angola, Indiana, USA
    • Md Rafiqul Islam MBA in Business Analytics, International American University
    • Mahfuz Alam MBA in Business Analytics, International American University, Los Angeles, California
    • Sanjib Kumar Shil MBA in Management Information Systems, International American University
    https://doi.org/10.14419/s0pktr58

    Received date: June 20, 2025

    Accepted date: July 15, 2025

    Published date: July 26, 2025

  • Cryptocurrency Forecasting; LSTM Neural Networks; Market Liquidity; Machine Learning; VWAP; VVR.
  • Abstract

    Cryptocurrency markets are experiencing rapid growth, but this expansion comes with significant challenges, particularly in predicting ‎cryptocurrency prices for traders in the U.S. In this study, we explore how deep learning and machine learning models can be used to forecast ‎the closing prices of the XRP/USDT trading pair. While many existing cryptocurrency prediction models focus solely on price and volume ‎patterns, they often overlook market liquidity, a crucial factor in price predictability. To address this, we introduce two important liquidity ‎proxy metrics: the Volume-To-Volatility Ratio (VVR) and the Volume-Weighted Average Price (VWAP). These metrics provide a clearer ‎understanding of market stability and liquidity, ultimately enhancing the accuracy of our price predictions. We developed four machine ‎learning models, Linear Regression, Random Forest, XGBoost, and LSTM neural networks, using historical data without incorporating the ‎liquidity proxy metrics, and evaluated their performance. We then retrained the models, including the liquidity proxy metrics, and reassessed ‎their performance. In both cases (with and without the liquidity proxies), the LSTM model consistently outperformed the others. These ‎results underscore the importance of considering market liquidity when predicting cryptocurrency closing prices. Therefore, incorporating ‎these liquidity metrics is essential for more accurate forecasting models. Our findings offer valuable insights for traders and developers ‎seeking to create smarter and more risk-aware strategies in the U.S. digital assets market‎.

  • References

    1. Al Montaser, M. A., Ghosh, B. P., Barua, A., Karim, F., Das, B. C., Shawon, R. E. R., & Chowdhury, M. S. R. (2025). Sentiment analysis of social media data: Business insights and consumer behavior trends in the USA. Edelweiss Applied Science and Technology, 9(1), 545–565. https://doi.org/10.55214/25768484.v9i1.4164.
    2. Amihud, Yakov (2002). “Illiquidity and stock returns: cross-section and time-series effects.” Journal of Financial Markets, 5(1), 31–56. https://doi.org/10.1016/S1386-4181(01)00024-6.
    3. Barberis, Nicholas; Shleifer, Andrei; Vishny, Robert (1998). “A Model of Investor Sentiment.” Journal of Financial Economics, 49(3), 307–343. PDF (NBER Working Paper): https://www.nber.org/papers/w5926.pdf.
    4. Bhowmik, P. K., Chowdhury, F. R., Sumsuzzaman, M., Ray, R. K., Khan, M. M., Gomes, C. A. H., ... & Gomes, C. A. (2025). AI-Driven Senti-ment Analysis for Bitcoin Market Trends: A Predictive Approach to Crypto Volatility. Journal of Ecohumanism, 4(4), 266–288. https://doi.org/10.62754/joe.v4i4.6729.
    5. Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of China stock market. IEEE International Conference on Big Data. https://doi.org/10.1109/BigData.2015.7364089.
    6. Chordia, T., Roll, R., & Subrahmanyam, A. (2005). Evidence on the speed of convergence to market efficiency. Journal of Financial Economics, 76(2), 271–292. https://doi.org/10.1016/j.jfineco.2004.06.004.
    7. Das, B. C., Sarker, B., Saha, A., Bishnu, K. K., Sartaz, M. S., Hasanuzzaman, M., ... & Khan, M. M. (2025). Detecting Cryptocurrency Scams in the USA: A Machine Learning-Based Analysis of Scam Patterns and Behaviors. Journal of Ecohumanism, 4(2), 2091–2111. https://doi.org/10.62754/joe.v4i2.6604.
    8. Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK Inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773.
    9. Foucault, T., Pagano, M., & Röell, A. (2013). Market Liquidity: Theory, Evidence, and Policy. Oxford University Press.
    10. Hasan, M. S., Siam, M. A., Ahad, M. A., Hossain, M. N., Ridoy, M. H., Rabbi, M. N. S., ... & Jakir, T. (2024). Predictive Analytics for Customer Retention: Machine Learning Models to Analyze and Mitigate Churn in E-Commerce Platforms. Journal of Business and Management Studies, 6(4), 304–320. https://doi.org/10.32996/jbms.2024.6.4.22.
    11. Hasanuzzaman, M., Hossain, M., Rahman, M. M., Rabbi, M. M. K., Khan, M. M., Zeeshan, M. A. F., ... & Kawsar, M. (2025). Understanding So-cial Media Behavior in the USA: AI-Driven Insights for Predicting Digital Trends and User Engagement. Journal of Ecohumanism, 4(4), 119–141. https://doi.org/10.62754/joe.v4i4.6717.
    12. Hossain, M. I., Khan, M. N. M., Fariha, N., Tasnia, R., Sarker, B., Doha, M. Z., ... & Siam, M. A. (2025). Assessing Urban-Rural Income Dispari-ties in the USA: A Data-Driven Approach Using Predictive Analytics. Journal of Ecohumanism, 4(4), 300–320. https://doi.org/10.62754/joe.v4i4.6733.
    13. Islam, M. R., Hossain, M., Alam, M., Khan, M. M., Rabbi, M. M. K., Rabby, M. F., ... & Tarafder, M. T. R. (2025). Leveraging Machine Learning for Insights and Predictions in Synthetic E-commerce Data in the USA: A Comprehensive Analysis. Journal of Ecohumanism, 4(2), 2394–2420. https://doi.org/10.62754/joe.v4i2.6635.
    14. Islam, M. S., Bashir, M., Rahman, S., Al Montaser, M. A., Bortty, J. C., Nishan, A., & Haque, M. R. (2025). Machine Learning-Based Cryptocur-rency Prediction: Enhancing Market Forecasting with Advanced Predictive Models. Journal of Ecohumanism, 4(2), 2498–2519. https://doi.org/10.62754/joe.v4i2.6663.
    15. Islam, M. Z., et al. (2025). Machine Learning-Based Detection and Analysis of Suspicious Activities in Bitcoin Wallet Transactions in the USA. Journal of Ecohumanism, 4(1), 3714–3734. https://doi.org/10.62754/joe.v4i1.6214.
    16. Jakir, T., Rabbi, M. N. S., Rabbi, M. M. K., Ahad, M. A., Siam, M. A., Hossain, M. N., ... & Hossain, A. (2023). Machine Learning-Powered Fi-nancial Fraud Detection: Building Robust Predictive Models for Transactional Security. Journal of Economics, Finance and Accounting Studies, 5(5), 161–180. https://doi.org/10.32996/jefas.2023.5.5.16.
    17. Kyle, Albert S. (1985). “Continuous Auctions and Insider Trading.” Econometrica, 53(6), 1315–1336. PDF: https://people.duke.edu/~qc2/BA532/1985%20EMA%20Kyle.pdf. https://doi.org/10.2307/1913210.
    18. Kyle, A. S., & Obizhaeva, A. A. (2016). Market microstructure invariance: Theory and empirical tests. Econometrica, 84(4), 1345–1404. https://doi.org/10.3982/ECTA10486.
    19. Kristjanpoller, W., & Minutolo, M. (2016). Forecasting volatility of oil prices using an artificial neural network-GARCH model. Expert Systems with Applications, 65, 233–241. https://doi.org/10.1016/j.eswa.2016.08.045.
    20. McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of Bitcoin using Machine Learning. 20th International Conference on Information Integration and Web-based Applications & Services. https://doi.org/10.1109/PDP2018.2018.00060.
    21. Mohaimin, M. R., Das, B. C., Akter, R., Anonna, F. R., Hasanuzzaman, M., Chowdhury, B. R., & Alam, S. (2025). Predictive Analytics for Tele-com Customer Churn: Enhancing Retention Strategies in the US Market. Journal of Computer Science and Technology Studies, 7(1), 30–45.
    22. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. White Paper. https://doi.org/10.32996/jcsts.2025.7.1.3.
    23. Rana, M. S., Chouksey, A., Hossain, S., Sumsuzoha, M., Bhowmik, P. K., Hossain, M., ... & Zeeshan, M. A. F. (2025). AI-Driven Predictive Mod-eling for Banking Customer Churn: Insights for the US Financial Sector. Journal of Ecohumanism, 4(1), 3478–3497. https://doi.org/10.62754/joe.v4i1.6188.
    24. Rahman, M. S., Hossain, M. S., Rahman, M. K., Islam, M. R., Sumon, M. F. I., Siam, M. A., & Debnath, P. (2025). Enhancing Supply Chain Transparency with Blockchain: A Data-Driven Analysis of Distributed Ledger Applications. Journal of Business and Management Studies, 7(3), 59–77. https://doi.org/10.32996/jbms.2025.7.3.7.
    25. Ray, R. K., Sumsuzoha, M., Faisal, M. H., Chowdhury, S. S., Rahman, Z., Hossain, E., ... & Rahman, M. S. (2025). Harnessing Machine Learning and AI to Analyze the Impact of Digital Finance on Urban Economic Resilience in the USA. Journal of Ecohumanism, 4(2), 1417–1442. https://doi.org/10.62754/joe.v4i2.6515.
    26. Sebastiao, H., & Godinho, P. (2021). Forecasting and trading cryptocurrencies with machine learning under changing market conditions. Financial Innovation, 7(1), 1–30. https://doi.org/10.1186/s40854-020-00217-x.
    27. Shawon, R. E. R., Hasan, M. R., Rahman, M. A., Al Jobaer, M. A., Islam, M. R., Kawsar, M., & Akter, R. (2025). Designing and Deploying AI Models for Sustainable Logistics Optimization: A Case Study on Eco-Efficient Supply Chains in the USA. Journal of Ecohumanism, 4(2), 2143–2166. https://doi.org/10.62754/joe.v4i2.6610.
    28. Sizan, M. M. H., et al. (2025). Advanced Machine Learning Approaches for Credit Card Fraud Detection in the USA: A Comprehensive Analysis. Journal of Ecohumanism, 4(2), 883–905. https://doi.org/10.62754/joe.v4i2.6377.
    29. Sizan, M. M. H., et al. (2025). Bankruptcy Prediction for US Businesses: Leveraging Machine Learning for Financial Stability. Journal of Business and Management Studies, 7(1), 01–14. https://doi.org/10.32996/jbms.2025.7.1.1.
    30. Tsay, R. S. (2010). Analysis of Financial Time Series (Vol. 543). John Wiley & Sons. https://doi.org/10.1002/9780470644560.
    31. Tiwari, A. K., Jana, R. K., Das, D., & Roubaud, D. (2021). Forecasting Bitcoin returns using ARFIMA, GARCH and machine learning models: An application to the Covid-19 crisis. Research in International Business and Finance, 58, 101437.
  • Downloads

  • How to Cite

    Islam, M. Z., Rahman, M. S., Sumsuzoha, M., Sarker, B., Islam, M. R., Alam, M., & Shil, S. K. (2025). Cryptocurrency Price Forecasting Using Machine Learning: ‎Building Intelligent Financial Prediction Models. International Journal of Accounting and Economics Studies, 12(3), 255-268. https://doi.org/10.14419/s0pktr58