Di- and tetranuclear gadolinium (III) complexes of 2-hydroxypropane-1,2,3-tricarboxylic acid and 1,2,2-trimethylcyclopentane-1,3-dicarboxylic acid : identification and characterization

  • Authors

    • Mohammed Riri Hassan II University http://orcid.org/0000-0003-3218-8362
    • Farid Hadhoudi Hassan II university
    • Mustapha Hor Hassan II university
    • Samir Ezzemouri Hassan II university
    • Tarik Eljaddi Université de Rouen
    • Adelkhalek Benajjar High Engineering School of Information,Management and Civil Engineering
    • Miloudi Hlaibi Hassan II university and Université de Rouen
  • Citric and Camphoric Acid, Coloress Complexes, Indirect Photometry Detection, Gadolinium Complexes, Stability of Contrast Agents.
  • Our studying involved, Identification and characterization of two novel gadolinium complexes with 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid) noted H3L and 1,2,2-trimethylcyclopentane-1, 3-dicarboxylic acid (camphoric acid) noted H2L in aqueous solution and in pH range 5,5–7,5. These acids containing the donor atoms (oxygen of OH and COOH), the formatted complexes are colorless and have no absorption band UV–visible. So, to determine the composition and stabilities of these complexes in solution, we have used an analytical technique called «Indirect Photometry Detection (IPD) » have identified multi-nuclear and multi-dentate complexes studied in this work. Giving for these colorless complexes with a mole ratio (M:L): (4:2) for Gd (III)–Citric acid and (2:2) Gd (III)–Camphoric acid. In addition, we have shown that the compositions and stabilities constant of these complexes are depended on the acidity of the medium.

    Author Biography

    • Mohammed Riri, Hassan II University
      Laboratory of Material - Material Interaction and Processes Membrane (I3MP), Departement of chemistry, Faculty of Sciences Hassan II University, Ain Chock, BP 5366, Maârif, Casablanca, Morocco
  • References

    1. [1] Reimer P, Tombach B, Heike D, Hesse T, Sander G, Balzer T, Shamsi K, Berns T, Rummeny E J, Peters P E (1996) Neue MR-Kontrastmittel in der Leberdiagnostik Erste klinische Ergebnisse mit hepatobiliärem Eovist® (Gadolinium-EOB-DTPA) und RES-spezifischem Resovist (SH U 555 A). Der Radiologe 36, 124-133. https://doi.org/10.1007/s001170050049.

      [2] Thunus L, Lejeune, R (1999) Overview of transition metal and lanthanide complexes as diagnostic tools. Coordination Chemistry Reviews 184, 125-155 https://doi.org/10.1016/S0010-8545(98)00206-9.

      [3] Guo-Ping Y, Mai-Li L, Li-Yun L (2005) Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents. Radiography 11, 117-122 https://doi.org/10.1016/j.radi.2004.12.006.

      [4] Yoshimasa M, Masashi I, Natsuki K, Hsien-Han L, Taro A, Chizuko IY, Yuki M, Yoshichika Y, Yoshitomo H, Shoko G (2016) Mono- and dinuclear gadolinium(III) complexes of tris (4-carboxy-3-benzyl-3-azabutyl) amine: Synthesis and relaxation properties. Polyhedron 107, 148–152 https://doi.org/10.1016/j.poly.2015.12.064.

      [5] Sofía M, Martín G B (2017) Synthesis of Gadolinium-based Nanostructures Through an Enzymatic Liposome-controlled Reaction. Colloid and Interface Science Communications 19, 31-34.

      [6] Rocklin R D (1991) Detection in ion chromatography. J, Chromatogr. 546, 175-187. https://doi.org/10.1016/S0021-9673(01)93016-X.

      [7] Verchere J F, Dona A M, (1992) Exchange methods for the indirect photometric determination of anions and organic molecules. Analusis 20, 437-450 Nº notice refdoc (ud4) : 4321863.

      [8] Morin P, François C, Dreux M (1994) Séparation de cations et d'anions inorganiques par éléctrophorèse capillaire ionique avec une détection spectrométrique UV indirecte, Capillary electrophoresis of inorganic cations and anions with different carrier electrolytes and UV detection. Analusis 22, 178-187 Nº notice refdoc (ud4) : 4091847.

      [9] Ramshing A, Rusika J, Hasen E H (1980) A new approach to enzymatic assay based on flow-injection spectrophotometry with acid-base indicators. Anal. Chim. Acta 114, 165-181 https://doi.org/10.1016/S0003-2670(01)84288-4.

      [10] Riri M, Benjjar A, Kamal O, Hor M, Touaj K, Hlaibi M (2014) Novel gadolinium complexes in aqueous solution : characterization, identification and probable structures. International Journal of Advanced Chemistry 2, 130-138 https://doi.org/10.14419/ijac.v2i2.2926.

      [11] Hlaïbi M, Hor M, Riri M, Benjjar A, Verchère J F (2009) Multinuclear 183W and 13C NMR and indirect photometry study for the identification and the characterization of new complexes of sugar acids. J. of Molecular Structure 920, 310–322 https://doi.org/10.1016/j.molstruc.2008.11.016.

      [12] Riri M, Hor M, Kamal O, Eljaddi T, Benjjar A, Hlaıbi, M (2011) New gadolinium(III) complexes with simple organic acids (Oxalic, Glycolic and Malic Acid), Journal of Materials & Environmental Science 2, 303-308.

      [13] Riri M, Kamal O, Benjjar A, Serdaoui F, Hlaibi M (2013) Composition, Stability and Probable Structure of a Colourless Organometallic Complex (Gd(III)-Malic Acid). Open Journal of Physical Chemistry 3, 49-58 https://doi.org/10.4236/ojpc.2013.31007.

      [14] Millan M M, Jon S B, Richard J W, Peter C F (1995) Synthesis, Structure, and Spectroscopic Properties of Ortho-Metalated Platinum(II) Complexes. Inorg. Chem. 34, 2334–2342 https://doi.org/10.1021/ic00113a013.

      [15] Nonat A, Gateau C, Fries P H, Mazzanti M (2006) Lanthanide Complexes of a Picolinate Ligand Derived from 1,4,7-Triazacyclononane with Potential Application in Magnetic Resonance Imaging and Time-Resolved Luminescence Imaging. Chem. Eur. J. 12, 7133-750 https://doi.org/10.1002/chem.200501390.

      [16] Hiroyuki M, Masaaki W, Makoto T, Takayuki H, Yoshitane K, Michiko B I, Motomichi I, Quintus F (2002) Novel optically-active bis(amino acid) ligands and their complexation with gadolinium. Journal of the Chemical Society, Dalton Transactions 6, 1119-1125 https://doi.org/10.1039/b108024p.

      [17] Anelli P L, Calabi L, De Haen C, Lttuda L, Lorosso V, Maiocchi A, Morosini P, Uggeri F (1997) hepatocyte-directed MRI contrast agents - can we take advantage of bile-acids. Acta Radiologica 38, 125-133.

      [18] Angela P L T, Wing-Tak W (2008) Synthesis, structure, and stability studies of dimeric gadolinium(III) complexes containing cyclic polyaminopolycarboxylic bisamide ligands. Inorganic Chemistry Communications 11, 1323-1326 https://doi.org/10.1016/j.inoche.2008.08.013.

      [19] Jonathan M, Beeta B M, Rachael P, Mark F L, Andrew J P W, Patrizia F, Joachim H G S, Ramon V (2010) coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies. Dalton Trans. 39, 10056-10067 https://doi.org/10.1039/c0dt00815j.

      [20] Moller R P, Sasu K (2010) Gd-DTPA in the hydrosphere: Kinetics of transmetallation by ions of rare earth elements, Y and Cu. Chemie der Erde. 70, 125-136 https://doi.org/10.1016/j.chemer.2010.01.003.

      [21] Nwe K, Bernardo M, Regino C A S, Williams M, Brechbiel, W M (2010) Comparison of MRI properties between derivatized DTPA and DOTA gadolinium–dendrimer conjugates. Bioorganic Med. Chem. 18, 5925-5931 https://doi.org/10.1016/j.bmc.2010.06.086.

      [22] Tsan-Hwang C, Yun-Ming W, Kuei-Tang L, Gin-Chung L (2001) Synthesis of four derivatives of 3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid, the stabilities of their complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) and water-exchange investigations of Gd(III) chelates. Journal of the Chemical Society, Dalton Transactions 22, 3357-3366 https://doi.org/10.1039/b107456n.

      [23] Lee A S, Lee HC, Jung Y W, Lee J, Choi W J, Kim A K, Park M C (2011) Paradoxical high signal intensity of hepatocellular carcinoma in the hepatobiliary phase of Gd-EOB-DTPA enhanced MRI: initial experience. Magnetic Resonance Imaging 29, 83-90 https://doi.org/10.1016/j.mri.2010.07.019.

      [24] Moller P R, Knappe A, Dulski P, Pekdeger A (2011) Behavior of Gd-DTPA in simulated bank filtration. Applied Geochemistry 26, 140-149. https://doi.org/10.1016/j.apgeochem.2010.11.011.

      [25] Kostova I, Momekov G, Stancheva, P (2007) New Samarium (III), Gadolinium (III), and Dysprosium (III) Complexes of Coumarin-3-Carboxylic Acid as Antiproliferative Agents. Metal-Based Drugs 2007, 8 https://doi.org/10.1155/2007/15925.

      [26] Yue W, Xueyi W, Qingtao M, Hongmin J, Run Z, Peixun Z, Renfeng S, Huan F, Zhiqiang Z (2017) A gadolinium(III)-coumarin complex based MRI/Fluorescence bimodal probe for the detection of fluoride ion in aqueous medium. Tetrahedron 73, 5700-5705 https://doi.org/10.1016/j.tet.2017.08.007.

      [27] Elisa S S M, Dina M, Zênis N d R, Ana S P, João G B, Ana M A, Mafalda L, João E C-L, Maria F B, Alberto A C C P, Sandra C C N, Hugh D B, Telma C (2017) Dibrominated camphoric acid derived salen complexes: Synthesis, characterization and cytotoxic activity. Polyhedron 137, 147-156.

      [28] Huijie L, Jinghe Y, Linyu J, Sasa C, Yanlong B, Xudong Z, Yamin L (2015) Syntheses, structures and properties of two new coordination polymers based on d-camphoric acid and 2-phenyl-4,6-diamino-1, 3, 5-triazine. Journal of Solid State Chemistry 225, 135-140 https://doi.org/10.1016/j.jssc.2014.12.011.

      [29] Soo Y L, Kwang Y L, Hyeon G L (2017) Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch. International Journal of Biological Macromolecules In Press, Accepted Manuscript.

      [30] Xuefei L, Yingying W, Huijie L, Haiyan L, Jinghe Y, Yamin L (2017) four isostructural lanthanide coordination polymers based on rare coordinated citric acid: Syntheses, structures, magnetisms and luminescence 232, 103-110.

      [31] Serjeant P E, Dempsey B (1979) Ionization Constants of Organic Acids in Aqueous Solution (Pergamon, Oxford).

      [32] Bjerrum J and al., Stability Constants (1958) Chemical Society, London, United Kinkdom.

      [33] Langmyhr J F, Klausen K S, (1963) Complex formation of iron (III) with chrome azurol S. Analytica Chimica Acta 29, 149-167 https://doi.org/10.1016/S0003-2670(00)88596-7.

      [34] Dona M A, Verchere F (1991) Analytical applications of oxocarbons. Part 3. Specific spectrophoto-metric determination of oxalic acid by dissociation of the zirconium (IV)–chloranilate complex. Analyst 116, 533-536 https://doi.org/10.1039/AN9911600533.

      [35] Riri M, Hor M, Serdaoui F, Hlaibi M (2016) Complexation of trivalent lanthanide cations by different chelation sites of malic and tartric acid (composition, stability and probable structure). Arabian Journal of Chemistry 9, S1478-S1486 https://doi.org/10.1016/j.arabjc.2012.03.012.

  • Downloads

  • How to Cite

    Riri, M., Hadhoudi, F., Hor, M., Ezzemouri, S., Eljaddi, T., Benajjar, A., & Hlaibi, M. (2017). Di- and tetranuclear gadolinium (III) complexes of 2-hydroxypropane-1,2,3-tricarboxylic acid and 1,2,2-trimethylcyclopentane-1,3-dicarboxylic acid : identification and characterization. International Journal of Advanced Chemistry, 5(2), 102-107. https://doi.org/10.14419/ijac.v5i2.8471