Synthesis of locust bean gum-based terpolymer bentonite composite: evaluation for indigo carmine adsorption


  • Vishalakshi Badalamoole Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199 (DK), Karnataka, India.
  • Sirajo Abubakar Zauro Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199 (DK), Karnataka, India.





Adsorption, Bentonite, Diallyldimethylammonium chloride, Indigo carmine, Locust bean gum, 2-acrylamido-2-methyl-1-propane sulfonic Acid.


A terpolymer gel compositeis made up of locust bean gum (LBG), diallyldimethylammonium chloride (DADMAC), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and bentonite (BNT) was prepared using methylenebisacrylamide (MBA) as crosslinker via microwave irradiation and characterized using FTIR, TGA and SEM techniques. Swelling behavior of the composite was studied under different pH conditions. The composite was also evaluated for adsorption of anionic dye ‘Indigo Carmine’ (IC). The behaviour of the composite was compared with the terpolymer gel without the clay component. The gel showed remarkably higher swelling under neutral pH compared to the composite. The adsorption capacity of the terpolymer gel without clay for Indigo Carmine dyeis also found to be higher (17.36 mg/g) compared to the clay composite (11.99 mg/g). The adsorption data were subjected to three different isotherm models namely; Freundlich, Langmuir and Temkin and were observed to be explained best by Freundlich model. The adsorption of indigo Carmine on the terpolymer gel and the composite is observed to be a second order kinetic process.


[1] Bueno, V. B., Bentini, R., Catalani, L. H. and Petri, D. F. S. (2013). Synthesis and swelling behavior of xanthan based hydrogels, Carbohydr. Polym. 92: 1091– 1099,

[2] Carvalho, T. E. M. D., Fungaro, D. A., Magdalena, C. P, Cunico, P. (2011). Adsorption of indigo carmine from aqueous solution using coal fly ash and zeolite from fly ash,J. Radioanal. Nucl. Chem. 289: 617–626,

[3] Cestari, A. R., Vieira, E. F. S., Tavares, A. M. G. and Bruns, R. E. (2008). The removal of the indigo carmine dye from aqueous solutions using crosslinkedchitosanEvaluation of adsorption thermodynamics using a full factorial design, J. Hazard. Mater. 153: 566–574,

[4] Dalaran, M., Emik, S., Guclu, G., Iyim, T. B. and Ozgumus, S. (2009). Removal of acidic dye from aqueous solution using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels, Polym. Bull. 63: 159-171,

[5] Dalaran, M., Emik, S., Güçlü, G., İyim, T. B. and Özgümüş, S. (2011). Study on a novel polyampholytenanocomposite superabsorbent hydrogels: Synthesis, characterization and investigation of removal of indigo carmine from aqueous solution, Desalin. 279: 170–182,

[6] Durmaz, S. and Okay, O. (2000).Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization, Polym. 41(10): 3693–3704

[7] El Haddad, M., Mamouni, R., Saffaj, N., Lazar, S.(2012). Adsorptive Removal of Basic Dye Rhodamine B from Aquoeus Media onto Animal Bone Meal as New Low Cost Adsorbent, Glob. J. Hum. Soc. Sci. Geog. & Environ. Geo-Sci. 12: 19-29

[8] Erhayem, M., Al-Tohami, F., Mohamed, R.,Ahmida,K., (2015). Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinusofficinalis leaves. Am. J. Anal. Chem., 6: 1-10,

[9] Fosso-kankeu, E., Mittal, H., Mishra, S. B. and Mishra, A. K. (2015), Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes. J. Ind. Eng. Chem. 22: 171.178,

[10] Gan, L., Shang, S., Hu, E., Yuen, C. W. M. and Jiang, S. (2015). KonjacGlucomannan/grapheme oxide hydrogels with enhance dye adsorption capability for methyl blue and methyl orange. Appl. Sur. Sci. 357: 866-872,

[11] Ganji, F., Vasheghani-Farahani, S., and Vasheghani-Farahani, E. (2010). Theoretical Description of Hydrogel Swelling: AReview, Iran.Polym.J. 19(5): 375-398.

[12] Geyikçi, F. (2016), Factorial design analysis for adsorption of Indigo Carmine onto Montmorillonite: Evaluation of the kinetics and equilibrium, Prog. Org. Coatings 98: 28-34,

[13] Giri, T. K., Pure, S. and Tripath, D. K. (2015). Synthesis of Graft Copolymer of Acrylamide for Locust Bean Gum using Microwave Energy: Swelling Behaviour, Floculation Characteristic and Acute Toxicity Study. Polimeros, 25(2): 168-174,

[14] Gopi, S., Balakrishnan, P., Piusa, A. and Thomas, S. (2017). Chitin nanowhisker (ChNW)functionalized electrospunPVDFmembrane for enhanced removal of Indigo carmine, Carbohydr. Polym. 165: 115–122,

[15] Gupta, S. K., Nayunigari, M. K., Misra, R., Ansari, F. A., Dionysiou, D. D., Maity, A., Bux, F.(2016). Synthesis and Performance Evaluation of a New Polymeric Composite for the Treatment of Textile Wastewater, Ind. Eng. Chem. Res., 55: 3−20,

[16] Freundlich, H. and Heller, W. (1939). The Adsorption of cis and trans-Azobenzene, J. Am. Chem. Soc., 61(8):228-230,

[17] Ho, Y. S. and McKAY, G. (1998). A Comparison of Chemisorptions Kinetics Models Applied to Pollutant Removal of Various Sorbents. Trans IchemE, 76 Part B: 332-340

[18] Isiķ, M and Sponza D. T. (2004). Anaerobic/aerobic sequential treatment of a cotton textile mill wastewater, J. Chem. Technol. Biotechnol. 79(11): 1268–1274,

[19] Jing, R. and Hongfei, H. (2001). Study of Interpenetrating Polymer Network Hydrogels of Diallyldimethylammonium Chloride with Kappa-Carrageenan by UV Irradiation. Eur. Polym. J. 37: 2413-2417,

[20] Jiwalak, N., Rattanaphani, S., Bremner, J. B. and Rattanaphani,V. (2010). Equilibrium and Kinetic Modeling of the Adsorption of Indigo Carmine onto Silk, Fibers and Polym., 11(4): 572-579,

[21] Kaity, S., Isaac, J., Kumar, P. M., Bose, A., Wong, T. W. and. Ghosh, A. (2013). Microwaveassistedsynthesisofacrylamidegraftedlocustbeangum and itsapplicationindrugdelivery, Carbohydr. Polym. 98(1): 1083– 1094,

[22] Karthika, J. S. and Vishalakshi, B. (2015). Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye. Int. J. Biol. Macromol.81: 544-655,

[23] KruÅ›iÄ‹, M. K., MilosavljeviÄ‹, N., DebeljkoviÄ‹, A., Å°zűm, Å. B. and KaradaÄ£, E. (2012). Removal of Pb2+ Ions from Water by Poly(Acrylicamide-co-Sodium Methacrylate) Hydrogels. Water, Air, Soil Pollut. 223: 4355-4368,

[24] Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (11): 2221–2295,

[25] Li, M., Wang, H., Wu, S., Li, F. and Zhi, P. (2012). Adsorption of hazardous dyes indigo carmine and acid red on nanofiber Membranes, RSC Adv. 2: 900–907,

[26] Mahida, V. P., Patel, M. P.(2016). Superabsorbent amphoteric nanohydrogels: Synthesis, characterization and dyes adsorption studies, Chin. Chem. Lett. 27: 471–474,

[27] Maity, J., Ray, S. K.(2016). Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels, Int. J. Biol. Macromol. 89: 246-255,

[28] Malana, M, A., Ijaz, S. and Ashiqm, M. N. (2010). Removal of various dyes from aqueous media onto polymeric gel by adsorption process: their kinetics and thermodynamics. Desalin. 263:249-257,

[29] Martínez-Ruvalcaba, A., Sánchez-Díaz, J. C., Becerra, F., Cruz-Barba, L. E.and González-Ãlvarez, A. (2009). Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels, eXPRESSPolym. Lett. 3(1): 25–32,

[30] Mithun, U and Vishalakshi, B. (2014). Swelling Kinetics of a pH Sensitive Polyelctrolyte Complex of Polyacrylamide-g-aliginate and Chitosan, Int. J. Chemtech Res. 6(7): 3579-3588

[31] Patil, M. R., Shrivastava, V. S. (2015). Adsorption removal of carcinogenic acid violet19 dye from aqueous solution by polyaniline-Fe2O3 magnetic nano-composite, J. Mater. Environ. Sci. 6:11-21

[32] Ramesh, T. N. and Sreenivasa, V. P. (2015). Removal of Indigo Carmine Dye from Aqueous Solution using Magnesium Hydroxide as an Adsorbent, J. Mater. 2015: 1-10,

[33] Robati, D., Mirza, B., Ghazisaeidi, R., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., Gupta, V. K. (2016). Adsorption behavior of methylene blue dye on nanocomposite multi-walled carbon nanotube functionalized thiol (MWCNT-SH) as new adsorbent, J. Mol. Liq. 216: 830–835,

[34] Santos, S. C. R., Boaventura, R. A. R. (2016). Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium and kinetic studies in batch model, J. Environ. Chem. Eng. 4: 1473–1483,

[35] Sebastian, S., Mayadevi, S., Beevi, B. S., Mandal, S. (2014). Layered Clay-Alginate Composites for the Adsorption of Anionic Dyes: A Biocompatible Solution for Water/Wastewater Treatment, J. Water Res. Prot. 6, 177-184,

[36] Shukla, N.B., Rattan, S and Madras, G. (2012). Swelling and Dye adsorption Characteristics of Amphoteric Superadsorbent Polymer, Ind. Eng. Chem. Res. 51: 14941-14948,

[37] Temkin, S. I. and Yakobson, B. I. (1984). Diffusion-controlled reactions of chemically anisotropic molecules, J. Phys. Chem., 88(13): 2679–2682,

[38] Tirelli, N and Hunkeler, D. J. (1999). Variation in the Diallyldimethylammonium Chloride (DADMAC) Polymers Architectures: PEG/DADMAC blocks and Partially Quartenarised Polymers. Macromol. Chem. Phys., 200 (5): 1068-1073, DOI: 10.1002/(SICI)1521-393

[39] Zauro, S. A. and Vishalakshi, B. (2016). Microwave Assisted Synthesis of Poly(Diallyldimethylammonium Chloride) Grafted Locust Bean Gum: Swelling and Dye Adsorption Studies, Indian J. Adv. Chem. Sci. S1: 88-91

[40] Zhao, Q., Sun, J., Chen, S and Zhou, Q. (2010). Properties of Poly(Acrylicamide-co-diallyldimethylammonium Chloride) Hydrogels Synthesised in a Water-Ionic liquid Binary System. J. Appl. Polym. Sci. 115(5): 2940-2945,

[41] Zhou, C., Wu, Q., Lei, T and Negulescu, I. I. (2014). Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolysed polyacrylamide/cellulose nanocrystalnano composite hydrogels. Chem. Eng. J. 251: 17-24,

View Full Article: