An overview of the applications of furfural and its derivatives

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Recently, furfural, “the sleeping beauty bio-renewable chemical” has gained a renewed attention as a potential chemical for the production of biofuels and biochemicals. Furfural is the most commonly produced industrial chemical because its production is very flexible. It is one of the top value-added chemicals that can be produced from biomass. Furfural and its derivatives have been extensively used in plastics, pharmaceutical and agrochemical industries. Furfural is a natural precursor to a range of furan-based chemicals and solvents such as dihydropyran, methyltetrahydrofuran, tetrahydrofuran, methylfuranfurfuryl alcohol, tetrahydrofurfuryl alcohol and furoic acid. Furfural and its derivatives have been widely applied as fungicides and nematicides, transportation fuels, gasoline additives, lubricants, resins, decolorizing agents, jet fuel blend stocks, drugs, insecticides, bio-plastics, flavor enhancers for food and drinks, rapid all-weather repair system for bomb-damaged runways and pot holes and also for wood modification and book preservation.

  • Keywords

    Furfural; Furfuryl Alcohol; Tetrahydrofuran; Furoic Acid; 5-Methyl Furfural.

  • References

      [1] xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res., 344, 660-666.

      [2] BASF. (2002). BASF and Lyondell boost THF production (China/US).Specialty Chemicals, October.

      [3] Bhaumik, P., & Dhepe, P. L. (2014). Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Adv., 4, 26215-26221.

      [4] Binder, J. B., Blank, J. J., Cefali, A. V., & Raines, R. T. (2010). Synthesis of furfural from xylose and xylan. ChemSusChem, 3, 1268-1272.

      [5] Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates-The US Department of Energy's "Top 10" revisited. Green Chem., 12, 539-554.

      [6] Brownlee, H. J., & Miner, C. S. (1948). Industrial development for furfural. Ind. Eng. Chem., 40, 201-204.

      [7] Brydson, J. A. (1999). 28-Furan resins: Plastics Materials (Seventh Edition) Butterworth Heinemann, Oxford, pp.810-813.

      [8] Cai, A.X., Song, R.H., & Jiang, Z. Q. (1998). Effect of furfural residue on control of soil alkalization and amelioration of solonetz. Pedoshpere, 8, 343-348.

      [9] Campos Molina, M. J., Mariscal, R., Ojeda, M., & Lopez Granados, M. (2012). Cyclopentyl methyl ether: a green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural. Bioresour. Technol., 126, 321-327.

      [10] Cass, O. W. (1948). Chemical intermediates from furfural. Ind. Eng. Chem., 40, 216-219.

      [11] Chareonlimkun, A., Champreda, V., Shotipruk, A., & Laosiripojana, N. (2010). Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition. Bioresour. Technol., 101, 4179-4186.

      [12] Choudhary, V., Sandler, S. I., & Vlachos, D. G. (2012). Conversion of xylose to furfural using Lewis and Bronsted acid catalysts in aqueous media. ACS Catal., 2, 2022-2028.

      [13] Chun'ai D., Bo, L., Girisuta, B., & Heeres, H. J. (2010). Research progress on furfural residues recycling: A Literature review. Paper presented at the International Conference on Environmental Engineering and Applications (ICEEA).

      [14] Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 107, 2411-2502.

      [15] Dhepe, P. L., & Sahu, R. (2010). A solid-acid-based process for the conversion of hemicellulose. Green Chem., 12, 2153-2156.

      [16] Dias, A. S., Lima, S., Pillinger, M., & Valente, A. A. (2006). Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydr. Res., 341, 2946-2953.

      [17] Dias, A. S., Pillinger, M., & Valente, A. A. (2005). Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J. Catal., 229, 414-423.

      [18] Dutta, S., De, S., Saha, B., & Alam, M. I. (2012a). Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol., 2, 2025-2036.

      [19] Dutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012b). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., 288, 8-15.

      [20] Eastman, J., & Crandell, G. (2003). Putting GMBOND to the test. Available at: (accessed 20 May, 2015).

      [21] Eken-Saracoglu, N., Mutlu, S. F., Dilmac, G., & Cavusoglu, H. (1998). A comparative kinetic study of acidic hemicellulose hydrolysis in corn cob and sunflower seed hull. Bioresour. Technol., 65, 29-33.

      [22] Forstner, J., Unkelbach, U., Pindel, E., & Schweppe, R. (2012). Heterogen katalysierte herstellung von furfural aus xylose. Chem. Ing. Tech., 84, 503-508.

      [23] Gandini, A., & Belgacem, M. N. (1997). Furans in polymer chemistry. Prog. Polym. Sci., 22, 1203-1379.

      [24] Global production capacities of bioplastics. Available at: (accessed 20 May, 2015).

      [25] Guerbuez, E. I., Wettstein, S. G., & Dumesic, J. A. (2012). Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem, 5, 383-387.

      [26] Hensley, J., & Burger, G. (2006). Nematicidal properties of furfural and the development for nematode control in various crops for the United States markets. Journal of Nematology, 38, 274 (Abstr.).

      [27] Herrera, A., Tellez-Luis, S. J., Ramirez, J. A., & Vazquez, M. (2003). Production of xylose from sorghum straw using hydrochloric acid. J. Cereal Sci., 37, 267-274.

      [28] Hoydonckx, H. E., & Van Rhijn, W. M. (2008). Application of novel furan resins in composites. JEC Magazine.

      [29] Hoydonckx, H. E., Van Rhijn, W. M., Van Rhijn, W., De Vos, D.E., & Jacobs, P.A. (2000). Tetrahydrofuran. Ullmann's Encyclopedia of Industrial Chemistry: Wiley-VCH, Weinheim.

      [30] Hoydonckx, H. E., Van Rhijn, W. M., Van Rhijn, W., De Vos, D.E., and Jacobs,P.A. (2008). Furfural and derivatives Ullmann's encyclopedia of industrial engineering Wiley-VCH, Weinheim.

      [31] Hua, D., Li, P., Wu, Y., Chen, Y., Yang, M., Dang, J., Xie, Q.,Liu, J., & Sun, X.-y. (2013). Preparation of solid acid catalyst packing AAO/SBA-15-SO3H and application for dehydration of xylose to furfural. J. Ind. Eng. Chem., 19, 1395-1399.

      [32] Huber, G. W., Cheda, J. N., Barrett, C. J., & Dumesic, J. A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308, 1446-1450.

      [33] Huber, G. W., & Dumesic, J. A. (2006). An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal. Today, 111, 119-132.

      [34] Hurd, C. D., Garrett, J. W., & Osborne, E. N. (1933). Furan reactions. IV. Furoic acid from furfural. J. Am. Chem. Soc., 55, 1082-1084.

      [35] Ibeh, C. C. (1999). Amino and furan resins. (Andrew W Ed.) Handbook of Thermoset Plastics (2) pp. 72-96.

      [36] Kar, Y., & Deveci, H. (2006). Importance of P-series fuels for flexible-fuel vehicles (FFVs) and alternative fuels. Energy Sources, Part A, 28, 909-921.

      [37] Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy, 30, 247-253.

      [38] Kroes, R. (1999). Safety evaluation of certain food additives. WHO food additives series: 42.

      [39] Kruger, D. (1987). Development of furfuryl alcohol polymer concrete for South African applications Available at: (accessed 24 May, 2015).

      [40] Kumar, R., & Anandjiwala, R. D. (2013). Compression-molded flax fabric-reinforced polyfurfuryl alcohol bio-composites. J. Therm. Anal. Calorim. 112, 755-760.

      [41] Lamminpaa, K., Ahola, J., & Tanskanen, J. (2012). Kinetics of xylose dehydration into furfural in formic acid. Ind. Eng. Chem. Res., 51, 6297-6303.

      [42] Lange, J.-P., van der Heide, E., van Buijtenen, J., & Price, R. (2012). Furfural-a promising platform for lignocellulosic biofuels. ChemSusChem, 5, 150-166.

      [43] Lavarack, B. P., Griffin, G.J., Rodman,D., & Tellez-Luis, S. J. (2002). The acid hydrolysis of sugar cane bagasse hemicelluloses to produce xylose, arabinose, glucose and otherproducts. Biomass Bioenergy 23, 367-338.

      [44] Lenihan, P., Orozco, A., O'Neill, E., Ahmad, M. N. M., Rooney, D., W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J., 156, 395-403.

      [45] Mamman, A. S., Lee, J.-M., Kim, Y.-C., Hwang, I. T., Park, N.-J., Hwang, Y. K., Chang, J.-S., & Hwang, J.-S. (2008). Furfural: hemicellulose/xylose-derived biochemical. Biofuels, Bioprod. Biorefin., 2, 438-454.

      [46] Mansilla, H. D., Baeza, J., Urzua, S., Maturana, G., Villasenor, J., & Duran, N. (1998). Acid-catalyzed hydrolysis of rice hulls: evaluation of furfural production. Bioresour. Technol., 66, 189-193.

      [47] Mao, L., Zhang, L., GAO, N., & Li, A. (2012). FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour. Technol., 123, 324-331.

      [48] Map to Furfural and its many By-products. Available at: (accessed 2 April, 2015).

      [49] Merat, N., Godawa, C., & Gaset, A. (1990). High selective production of tetrahydrofurfuryl alcohol: catalytic hydrogenation of furfural and furfuryl alcohol. J. Chem. Technol. Biotechnol., 48, 145-159.

      [50] Montane, D., Salvado, J., Torras, C., & Farriol, X. (2002). High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy, 22, 295-304.

      [51] Moreau, C., Belgacem, M. N., & Gandini, A. (2004). Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27, 11-30.

      [52] Nigam, P. S., & Singh, A. (2010). Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci., 37, 52-68.

      [53] Pace, V. H. P., Castoldi, L., Domínguez de María, P., and Alcántara, A. R. (2012). 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 5, 1369-1379.

      [54] Penn Specialty. (2001). Penn Specialty Completes 80 MM lb/yr THF Plant. Hydrocarbon Processing, April.

      [55] Perego, C., & Bianchi, D. (2010). Biomass upgrading through acid-base catalysis. Chem. Eng. J., 161, 314-322.

      [56] Pirolini, A. P. (2015). Materials used in space shuttle thermal protection systems. Available at: (accessed 2 April, 2015).

      [57] Rahman, S. H. A., Choudhury, J. P., & Ahmad, A. L. (2006). Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem. Eng. J., 30,97-103.

      [58] Riansa-ngawong, W., & Prasertsan, P. (2011). Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydr. Res., 346, 103-110.

      [59] Rodrı´guez-Ka´bana, R., Kloepper, J. W., Weaver, C. F., & Robinson, D. G. (1993). Control of plant parasitic nematodes with furfural-a naturally occurring fumigant. Nematropica, 23, 63-73.

      [60] Rodriguez-Chong, A., Ramirez, J. A., Garrote, G., &Vazquez, M. (2004). Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. Journal of Food Engineering, 61, 143-152.

      [61] Saha, B. C. (2003). Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., 30, 279-291.

      [62] Sahu, R., & Dhepe, P. L. (2012). A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem, 5, 751-761.

      [63] Sain, B., Chaudhuri, A., Borgohain, J. N., Baruah, B. P., & Ghose, J. L. (1982). Furfural and furfural-based industrial chemicals. J. Sci. Ind. Res., 41, 431-438.

      [64] Serrano, L., Eguees, I., Alriols, M. G., Llano-Ponte, R., & Labidi, J. (2010). Miscanthus sinensis fractionation by different reagents. Chem. Eng. J., 156, 49-55.

      [65] Sitthisa, S., an, W., & Resasco, D. E. (2011). Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts. J. Catal., 284, 90-101.

      [66] Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 83, 1-11.

      [67] Sugama, T., Kukacka, L.E., & Horn, W. (2014). Water-compatible polymer concrete materials for use in rapid repair systems for airport runways. Department of Energy and Environment, Brookhaven National Laboratory, Upton, New York 11973 .

      [68] Tackes, G. (2001). Core binders: a Look to the future. Modern Casting, 31 Oct.

      [69] Vazquez, M., Oliva, M., Tellez-Luis, S. J., & Ramirez, J. A. (2007). Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour. Technol., 98, 3053-3060.

      [70] vom Stein, T., Grande, P. M., Leitner, W., & Dominguez de Maria, P. (2011). Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock. ChemSusChem, 4, 1592-1594.

      [71] Weingarten, R., Tompsett, G. A., Conner, W. C., Jr., & Huber, G. W. (2011). Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Bronsted acid sites. J. Catal., 279, 174-182.

      [72] Werpy, T. A., Petersen, G. (2004). Top value added chemicals from biomass.US Department of Energy, Washington, DC.

      [73] Win, D. T. (2005). "Furfural - gold from the garbage". Australian Journal of Technology, 8,185-190.

      [74] Wojcik, B. H. (1948). Catalytic hydrogenation of furan compounds. Ind. Eng. Chem., 40, 210-216.

      [75] Xin, F.Y., Liu, Q., Yin, B. Z., Zhu, L. L.,&Zhu, B. Q. (2009). Clean production method of seaweed fertilizer. China Patent: CNIOl439995 (A).

      [76] Xing, R., Qi, W., & Huber, G.W. (2011). Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy Environ. Sci., 4, 2193-2205.

      [77] Yang, Y., Hu, C.-W., & Abu-Omar, M. M. (2012a). Synthesis of furfural from xylose, xylan, and biomass using AlCl3•6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem, 5, 405-410.

      [78] Yang, W., Li, P., Bo, D., & Chang, H. (2012b). The optimization of formic acid hydrolysis of xylose in furfural production. Carbohydr. Res., 357, 53-61.

      [79] Yang, W., Li, P., Bo, D., Chang, H., Wang, X., & Zhu, T. (2013). Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system. Bioresour. Technol., 133, 361-369.

      [80] Yang, W., & Sen, A. (2011). Direct catalytic synthesis of 5-methylfurfural from biomass-derived carbohydrates. ChemSusChem, 4, 349-352.

      [81] Yuya, T., Takashi, M., Masahiro, F., Ken-ichi, K., & Masao, K. (2012). Synthesis of biomass-based monomers from biomass-based furfural for polyesters and evaluation of their biomass carbon ratios. ACS Symp. Ser., 1105, 91-110.

      [82] Zeitsch, K. J. (2000a). Furfural production needs chemical innovation. Chem. Innovation, 30, 29-32

      [83] Zeitsch, K. J. (2000b).The chemistry and technology of furfural and its many by-products. Sugar Series: Elsevier Science, Amsterdam, pp 376.




Article ID: 5048
DOI: 10.14419/ijac.v3i2.5048

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.