Comparative analyses of Nigerian and US corn Stalks, using PY-GC/MS

  • Authors

    • Anthonia E. Eseyin Department of sustainable Bio-prod;, Mississippi State University. USA
    • El Barbary Hassan Department of sustainable Bio-products, Mississippi State University. USA
    • Emad, M El-Giar School of Sciences, University of Louisiana at Monroe, USA
  • Bio-Oil, Fast pyrolysis, Nigerian corn stalks, US corn stalks, PY-GC/MS, and Valuable chemicals.
  • Pyrolysis gas chromatography mass spectrometry (Py-GC/MS) studies were carried out on the Nigerian and US corn stalks at 500 °C. Analyses of the fast pyrolysis products showed that the Nigerian corn stalks produced more diverse compounds like: acetaldehyde, acetic acid methyl ester, 2,3-pentanedione, 1-hydroxy-2-butanone, butanedial, phenol and vanillin. On the other hand, the pyrolyzed US corn stalks produced compounds like: furfural, phenol, 2-methoxy, 2-methylbenzaldehyde, and 2-methoxy-4-vinylphenol which had significantly high peak area percentages. Few anhydrous sugars were detected in the pyrolysis products of both samples. Both samples were found to be good biomass for the production of bio-oil and chemicals. However, the Nigerian corn stalks seem to be more suitable for the production of bio-oil while the US corn stalks seem to be more suitable for the production of valuable chemicals.

  • References

    1. [1] Ab Rasid, N. S., & Asadullah, M. (2014). Recent development of biomass fast pyrolysis technology and bio-oil upgrading: an overview. Adv. Mater. Res. (Durnten-Zurich, Switz.), 906, 142-147, 147 pp. doi: 10.4028/

      [2] Amen-Chen, C., Pakdel, H., & Roy, C. (1997). Separation of phenols from eucalyptus wood tar. Biomass Bioenergy, 13, 25-37. doi: 10.1016/s0961-9534(97)00021-4

      [3] Artigues, A., Puy, N., Bartroli, J., & Fabregas, E. (2014). Comparative assessment of internal standards for quantitative analysis of bio-oil compounds by gas chromatography/mass spectrometry using statistical criteria. Energy Fuels, 28, 3908-3915. doi: 10.1021/ef5005545

      [4] Bahng, M.-K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Anal. Chim. Acta, 651, 117-138. doi: 10.1016/j.aca.2009.08.016

      [5] Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy, 86, 2273-2282. doi: 10.1016/j.apenergy.2009.03.015

      [6] Bhattacharya, S. C., Salam, P. A., & Sharma, M. (2000). Emissions from biomass energy use in some selected Asian countries. Energy (Oxford), 25, 169-188. doi: 10.1016/s0360-5442(99)00065-1

      [7] Branca, C., Di Blasi, C., & Galgano, A. (2012). Catalyst Screening for the Production of Furfural from Corncob Pyrolysis. Energy Fuels, 26, 1520-1530. doi: 10.1021/ef202038n

      [8] Chang, J., Wang, W., Ren, X., Li, L., Zhang, Z., Yu, Y., & Geng, J. (2014). CN103980929A.

      [9] Cheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2012). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angew. Chem., Int. Ed., 51, 1387-1390, S1387/1381-S1387/1310. doi: 10.1002/anie.201107390

      [10] Demirbas, A. (2009). Biorefineries: Current activities and future developments. Energy Convers. Manage, 50, 2782-2801. doi: 10.1016/j.enconman.2009.06.035

      [11] Dobele, G., Rossinskaja, G., Dizhbite, T., Telysheva, G., Meier, D., & Faix, O. (2005). Application of catalysts for obtaining 1, 6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J. Anal. Appl. Pyrolysis, 74, 401-405. doi: 10.1016/j.jaap.2004.11.031

      [12] Heo, H. S., Park, H. J., Dong, J.-I., Park, S. H., Kim, S., Suh, D. J., Park, Y.-K. (2010). Fast pyrolysis of rice husk under different reaction conditions. J. Ind. Eng. Chem. (Amsterdam, Neth.), 16, 27-31. doi: 10.1016/j.jiec.2010.01.026

      [13] Hosoya, T., Kawamoto, H., & Saka, S. (2009). Role of methoxyl group in char formation from lignin-related compounds. J. Anal. Appl. Pyrolysis, 84, 79-83. doi: 10.1016/j.jaap.2008.10.024

      [14] Huang, Y., Wei, Z., Yin, X., & Wu, C. (2012). Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin. Bioresour. Technol., 103, 470-476. doi: 10.1016/j.biortech.2011.10.027

      [15] Karasmanoglu, F., & Tetik, E. (1998). Fuel properties of pyrolytic oil of the straw and stalk of rape plant. Renewable Energy, 16, 1090-1093.

      [16] Ko, C. H., Park, S. H., Jeon, J.-K., Suh, D. J., Jeong, K.-E., & Park, Y.-K. (2012). Upgrading of biofuel by the catalytic deoxygenation of biomass. Korean J. Chem. Eng., 29, 1657-1665. doi: 10.1007/s11814-012-0199-5

      [17] Lorenc-Grabowska, E., & Rutkowski, P. (2013). Activated carbons from solid residue from fast pyrolysis of biomass. Inz. Ochr. Srodowiska, 16, 205-215.

      [18] Lu, Q., Xiong, W.-M., Li, W.-Z., Guo, Q.-X., & Zhu, X.-F. (2009). Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds. Bioresour. Technol., 100, 4871-4876. doi: 10.1016/j.biortech.2009.04.068

      [19] Lv, G., Wu, S., Yang, G., Chen, J., Liu, Y., & Kong, F. (2013). Comparative study of pyrolysis behaviors of corn stalk and its three components. J. Anal. Appl. Pyrolysis, 104, 185-193. doi: 10.1016/j.jaap.2013.08.005

      [20] McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresour. Technol., 83, 37-46. doi: 10.1016/s0960-8524(01)00118-3

      [21] Nadji, H., Diouf, P. N., Benaboura, A., Bedard, Y., Riedl, B., & Stevanovic, T. (2009). Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour. Technol., 100, 3585-3592. doi: 10.1016/j.biortech.2009.01.074

      [22] Park, H. J., Park, K.-H., Jeon, J.-K., Kim, J., Ryoo, R., Jeong, K.-E., Park, Y.-K. (2012). Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97, 379-384. doi: 10.1016/j.fuel.2012.01.075

      [23] Peng, Y., & Wu, S. (2010). The structural and thermal characteristics of wheat straw hemicellulose. J. Anal. Appl. Pyrolysis, 88, 134-139. doi: 10.1016/j.jaap.2010.03.006

      [24] Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74, 1812-1822. doi: 10.1016/0016-2361(95)80013-8

      [25] Saha, B. C. (2003). Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol, 30, 279-291. doi: 10.1007/s10295-003-0049-x

      [26] Samanya, J., Hornung, A., Apfelbacher, A., & Vale, P. (2012). Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. J. Anal. Appl. Pyrolysis, 94, 120-125. doi: 10.1016/j.jaap.2011.11.017

      [27] Shen, D. K., & Gu, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol., 100, 6496-6504. doi: 10.1016/j.biortech.2009.06.095

      [28] Sun, J.-P., Sui, S.-J., Zhang, Z.-J., Tan, S., & Wang, Q.-W. (2013). Study on the pyrolytic behavior of wood-plastic composites using Py-GC/MS. BioResources, 8, 6196-6210, 6115 pp. doi: 10.15376/biores.8.4.6196-6210

      [29] Sun, R., Lawther, J. M., & Banks, W. B. (1998). Isolation and characterization of hemicellulose B and cellulose from pressure refined wheat straw. Ind. Crops Prod., 7, 121-128. doi: 10.1016/s0926-6690(97)00040-x

      [30] Venderbosch, R. H., & Heeres, H. J. (2011). Pyrolysis oil stabilization by catalytic hydrotreatment.

      [31] Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science (Washington, DC, U. S.), 330, 1222-1227. doi: 10.1126/science.1194218

      [32] Xie, Q., & Tong, Z. (2014). CN103833542A.

      [33] Xie, Y., Xu, C., Fang, D., Luo, Q., & Ma, J. (2013). A review on biomass fast pyrolysis oil properties and applications. Adv. Mater. Res. (Durnten-Zurich, Switz.), 779-780, 1431-1436, 1437 pp. doi: 10.4028/

      [34] Zhang, H., Xiao, R., Jin, B., Shen, D., Chen, R., & Xiao, G. (2013). Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts. Bioresour. Technol., 137, 82-87. doi: 10.1016/j.biortech.2013.03.031

      [35] Zhang, H., Xiao, R., Wang, D., Zhong, Z., Song, M., Pan, Q., & He, G. (2009). Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed with Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts. Energy Fuels, 23, 6199-6206. doi: 10.1021/ef900720m

  • Downloads

  • How to Cite

    Eseyin, A. E., Hassan, E. B., & El-Giar, E. M. (2015). Comparative analyses of Nigerian and US corn Stalks, using PY-GC/MS. International Journal of Advanced Chemistry, 3(1), 18-24.