Studies on Ultraviolet-Triggered Chain Scission in Cotton: from Hydroxyls to Carbonyls
-
https://doi.org/10.14419/rxrtt322
Received date: September 16, 2025
Accepted date: October 24, 2025
Published date: November 4, 2025
-
Cotton Fibre; Ultraviolet (UV) Radiation; Free Radicals; Environmental Safety -
Abstract
This work focuses on the degradation of fibers upon exposure to ultraviolet (UV) radiation. Physical changes in fibers following UV exposure were examined, and both polyamide (PA) and polyester (PET) fibers exhibited surface degradation when observed under scanning electron microscopy (SEM). UV radiation initiates photooxidative degradation, which leads to polymer chain scission, free radical formation, and a reduction in molecular weight. These processes deteriorate the mechanical properties of fibers and eventually render the materials unusable after an unpredictable period of exposure. This phenomenon, known as UV degradation, affects a wide range of natural and synthetic polymers, including rubbers, neoprene, and polyvinyl chloride (PVC). Prolonged UV exposure can cause fading, embrittlement, and loss of performance. When absorbed, UV energy excites photons within the polymer structure, generating free radicals that accelerate degradation, especially in the presence of catalyst residues. Since many pure plastics lack inherent UV resistance, their long-term durability is at serious risk, emphasizing the importance of protective measures in polymer applications.
-
References
- Algaba, I., Pepió, M., & Riva, A. (2006). Modelisation of the influence of structural parameters on the ultraviolet protection factor provided by cel-lulosic woven fabrics. Journal of the Textile Iinstitute, 97, 349–357. https://doi.org/10.1533/joti.2005.0162.
- Algaba, I., Riva, A., & Crews, P. C. (2004). Influence of fiber type and fabric porosity on the UPF of summer fabrics. AATCC Review, 4, 26–31.
- Almahroos, M., & Kurban, A. K. (2003). Sun protection for children and adolescents. Clinics in Dermatology, 21, 311–314. https://doi.org/10.1016/S0738-081X(03)00044-0.
- Bae, H. S., Lee, M. K., Kim, W. W., & Rhee, C. K. (2003). Dispersion properties of TiO2 nano-powder synthesized by homogeneous precipitation process at low temperatures. Colloids and Surfaces A: Physicochemical Engineering Aspects, 220, 169–177. https://doi.org/10.1016/S0927-7757(03)00077-3.
- Bajaj, P., Kothari, V. K., & Gosh, S. B. (2000). Review article: Some innovations in UV protective clothing. Indian Journal of Fibre and Textile Resarch, 25, 315–329.
- Barry, R., & Xiangwu, Z. (2009). Durable hydrophobic textile fabric finishing using silica nanoparticles and mixed silanes. Textile Research Journal, 79, 1115–1122. https://doi.org/10.1177/0040517508100184.
- Bashar, M. M., & Khan, M. A. (2013). An overview on surface modification of cotton fiber for apparel use. Journal of Polymers and the Environ-ment, 21, 181–190. https://doi.org/10.1007/s10924-012-0476-8.
- Becheri, A., Maximilian, D., Nostro, P. L., & Baglioni, P. (2008). Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10, 679–689. https://doi.org/10.1007/s11051-007-9318-3.
- Blossey, R. (2003). Self-cleaning surfaces – Virtual realities. Nature Materials, 2, 301–306. https://doi.org/10.1038/nmat856.
- I. Khan, K. Saeed, I. Khan, (2019), Nanoparticles: properties, applications and toxicities Arab. J. Chem., 12 , pp. 908-931, https://doi.org/10.1016/j.arabjc.2017.05.011.
- Kibria G, Repon MR, Hossain MF, (2022). UV-blocking cotton fabric design for comfortable summer wears: factors, durability and nanomaterials. Cellulose 29: 7555–7585https://doi.org/10.1007/s10570-022-04710-7.
- El-Hiti, G. A (2021), Photo stabilization of Polymers Using UV Absorbers, Materials (Review), 14(1), 20. https://doi.org/10.3390/polym14010020.
- Zeljko, M., (2021). Environmentally Friendly UV-Protective Polyacrylate/TiO₂ Nanocomposite Coatings, PMC, 13, 2609. https://doi.org/10.3390/polym13162609.
- Anjum, S., (2021) Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs), Review (PMC), 13(18):4570https://doi.org/10.3390/cancers13184570.
- Pánek, M., (2019). Durability of Exterior Transparent Coatings on Nano-modified Wood, Polymers, 9(11), 1568; https://doi.org/10.3390/nano9111568.
- Nikafshar, S., (2021) Improving UV-Stability of Epoxy Coating using Encapsulated HNTs with UV Stabilizers, Volume 151, , 105843, https://doi.org/10.1016/j.porgcoat.2020.105843.
- Velasco-Soto, M. A.,(2024) Functional UV Blocking and Superhydrophobic Coatings (Al₂O₃ & CeO₂), Polymers,. example of multifunctional NP coatings and functionalization approaches, 25;16(19):2705. https://doi.org/10.3390/polym16192705.
- Bozzi, A., Yuranova, T., & Kiwi, J. (2005). Self-cleaning of wool-polyamide and polyestertextiles by TiO2 -rutile modification under daylight irra-diation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry, 172, 27–34. https://doi.org/10.1016/j.jphotochem.2004.11.010.
- Burçin, A. Ç., Leyla, B., Önderm, T., & Numan, H. (2012). Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protec-tive, self-cleaning and antibacterial textile applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 132–139. https://doi.org/10.1016/j.colsurfa.2012.08.015.
- Radetić, M. (2013). Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C, 16, 62–76. https://doi.org/10.1016/j.jphotochemrev.2013.04.002.
- Reidy, D. J., Holmes, J. D., & Morris, M. A. (2006). Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia andsilica dopants. Ceramics International, 32, 235–239. https://doi.org/10.1016/j.ceramint.2005.02.009.
- Reinert, G., Fuso, F., Hilifiker, R., & Schmidt, E., (1997). UV-protecting properties of textile fabrics and their improvement. Textile Chemistry and Colorant, 29, 36–43.
- Rios, P. F., Dodiuk, H., Keing, S., McCharthy, S., & Dotan, A. (2008). Durable ultrahydrophobic surfaces for self-cleaning applications. Polymers for Advanced Technologies, 19, 1684–1691. https://doi.org/10.1002/pat.1208.
- Ndibewu, P. P., (2024). Effects of Titanium Dioxide (TiO₂) on Physico-Chemical Properties of Films after UV, 16(19), 2788; https://doi.org/10.3390/polym16192788.
- Tolbert, G. L., (2024) Release of Nanoparticle Coating Additives from Common Surfaces, 946:174381. https://doi.org/10.1016/j.scitotenv.2024.174381.
- Bao, W., (2019) Next-Generation Composite Coating System: Nanocoating, Frontiers in Materials, Volume 6 | https://doi.org/10.3389/fmats.2019.00072.
- Roshan, P. P., Bautista, L., Varga, M. D. L., Botet, J. M., Casals, E., Puntes, V., & Marsal, F. (2010). Nano-cotton fabrics with high ultraviolet pro-tection. Textile Research Journal, 80, 454–462. https://doi.org/10.1177/0040517509342316.
- Rupp, J., Bohringer, A., Yonenaga, A., & Hilden, J. (2001). Textiles for protection against harmful ultraviolet radiation. International Textile Bulle-tin, 6, 8–20.
- Saravanan, D. (2007). UV Protection textile material. AUTEX Research Journal, 7, 53–62. https://doi.org/10.1515/aut-2007-070106.
- Sarkar, A. K. (2004). An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatology, 4, 1–8. https://doi.org/10.1186/1471-5945-4-15.
- Sarkar, A. K. (2007). On the relationship between fabric processing and ultraviolet radiation transmission. Photochem photobiolPhotomed, 23, 191–196. https://doi.org/10.1111/j.1600-0781.2007.00306.x.
- Stankovic, S. B., Popovic, D., & Poparic, G. B. (2009). Ultraviolet protection factor of gray-state plain cotton knitted fabrics. Textile Research Journal, 79, 1034–1042. https://doi.org/10.1177/0040517508102016.
- Teli, M. D., Adoverelar, R., Kuma, V. R., & Pardeshi, P. D. (2003). Role of chelating agents and UV absorbers in improving photo-stability of dis-perse dyes. Journal of Textile Association, 63, 247–251.
- Ugur, S. S., Sarııšık, M., & Aktaş, H. A. (2011). Nano-TiO 2 based multilayer film deposition on cotton fabrics for UV-protection. Fibers and Pol-ymers, 12, 190–196. https://doi.org/10.1007/s12221-011-0190-5.
- Uğur Şule, S., Sarıışık, M., Aktaş, A. H., Çiğdem, M. U., & Erden, E. (2010). Modifying cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Research Lett, 5, 1204– 1210. https://doi.org/10.1007/s11671-010-9627-9.
- Ukaji, E., Takeshi, F., Masahide, S., & Noboru, S. (2007). The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Applied Surface Science, 254, 1563–1569. https://doi.org/10.1016/j.apsusc.2007.06.061.
- Chunder, A., Sarkar, S., Yu, Y., & Zhai, L. (2007). Fabrication of ultrathin polyelectrolyte fibers and controlled release properties. Colloids and Surfaces B: Biointerfaces, 58, 172–179. https://doi.org/10.1016/j.colsurfb.2007.03.004.
- Dastjerdi, R., Mojtahedi, M. R. M., Shoshtari A. M., & Khosroshahi A. (2010). Investigating the production and properties of Ag/TiO 2/PP anti-bacterial nanocomposite filament yarns. The Journal of The Textile Institute, 101, 204–213. https://doi.org/10.1080/00405000802346388.
- Dimitrovski, K., Sluga, F., & Urbas, R. (2010). Evaluation of the structure of monofilament PET woven fabrics and their UV protection properties. Textile Research Journal, 11, 10–27. https://doi.org/10.1177/0040517509352527.
- Farouk, A., Textor, T., Schollmeyer, E., Tarbuk, A., & Grancarić, A. M. (2010). Sol–gel-derived inorganic–organic hybrid polymers filled with ZnO nanoparticles as an ultraviolet protection finish for textiles. Autex Research Journal, 9, 58–63. https://doi.org/10.1515/aut-2010-100301.
- Gabrijelčič, H., Raša, U., Franci, S., & Keste, D. (2009). Influence of fabric construction parameters and thread colour on UV radiation protection. Fibres & Textile in Easteren Europ, 1, 46–54.
-
Downloads
-
How to Cite
Krishna , R. H. . (2025). Studies on Ultraviolet-Triggered Chain Scission in Cotton: from Hydroxyls to Carbonyls. International Journal of Advanced Chemistry, 13(2), 19-25. https://doi.org/10.14419/rxrtt322
