Molecular structure, NBO analysis, first hyper polarizability, and homo-lumo studies of π-extended tetrathiafulvalene (EXTTF) derivatives connected to π-nitro phenyl by density functional method

Authors

  • Tahar Abbaz Laboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-Cherif Messaadia, Souk Ahras, 41000, Algeria
  • Amel Bendjeddou Laboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-Cherif Messaadia, Souk Ahras, 41000, Algeria
  • Didier Villemin Laboratory of Molecular and Thio-Organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, Labex EMC3, ensicaen & University of Caen, Caen 14050, France

DOI:

https://doi.org/10.14419/ijac.v6i1.11126

Keywords:

Computational Chemistry, Density Functional Theory, Electronic Structure, Quantum Chemical Calculations, Tetrathiafulvalenes

Abstract

In these study we have been obtained the structural properties of (exTTF) derivatives 1-4 by using B3LYP/6-31G(d,p) of Density Functional Theory (DFT) utilizing Becke three exchange functional and Lee Yang Paar correlation functional. The calculation of ï¬rst hyperpolarizability shows that the molecules are attractive molecules for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules.

 

References

[1] Giacalone F, Segura JL, Martín N, Guldi DM. (2004). Exceptionally small attenuation factors in molecular wires. J. Am. Chem. Soc. 126(17): 5340-5341. https://doi.org/10.1021/ja0318333.

[2] Lorcy D, Bellec N, Fourmigue M, Avarvari N. (2009). Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coord. Chem. Rev. 253(9-10): 1398-1438. https://doi.org/10.1016/j.ccr.2008.09.012.

[3] Khodorkovsky V, Becker JV. (1994). in organic conductors: Fundamentals and applications; Farges, J. P., Ed.; Marcel Dekker: New York, Chapter 3, 75. ISBN 9780824792169.

[4] Bryce MR. (1995). Current trends in tetrathiafulvalene chemistry: towards increased dimensionality. J. Mater. Chem. 5: 1481-1496. https://doi.org/10.1039/jm9950501481.

[5] Jen AK, Rao VP, Drost KJ, Wong KY, Cava MP. (1994). Optimization of thermal stability and second-order nonlinear optical properties of thiophene derived chromophores J. Chem. Soc. Chem. Commun. (18): 2057-2058. https://doi.org/10.1039/c39940002057.

[6] Brisset H, Thobie-Gautier C, Jubault M, Gorgues A, Roncali J. (1994). Small bandgap molecular semiconductors based on rigidified tetrathiafulvalene-bithiophene hybrid conjugated systems. J. Chem. Soc. Chem. Commun. (15): 1765-1766. https://doi.org/10.1039/C39940001765.

[7] Takahashi K, Tomitani K, Ise T, Shirahata T. (1995). Selenienoquinonoid-extended analogues of TTF, EDT-TTF and BEDT-TTF. New donors and their conductive complexes, Chem. Lett. 24(8): 619-620. https://doi.org/10.1246/cl.1995.619.

[8] Hohenberg P, Kohn W. (1964). Inhomogeneous electron gas. Phys. Rev. 136(3B): 864-870. https://doi.org/10.1103/PhysRev.136.B864.

[9] Kohn W. (1999). Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71(5): 1253-1266. https://doi.org/10.1103/RevModPhys.71.1253.

[10] Kohn W., Sham LJ. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A): A1133. https://doi.org/10.1103/PhysRev.140.A1133.

[11] Otero M, Angeles HM, Seoane C, Martin N, Garin J, Orduna J, Alcala R, Villacampa B. (2002). Synthesis and properties of push-pull chromophores for second-order nonlinear optics derived from p-extended tetrathiafulvalenes (TTFs). Tetrahedron. 58 (37): 7463-7475. https://doi.org/10.1016/S0040-4020(02)00803-7.

[12] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE. (2009). Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford, CT.

[13] Becke AD. (1993). Densityâ€functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7): 5648-5652. https://doi.org/10.1063/1.464913.

[14] Lee CT, Yang WT, Parr RGB. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37(2): 785-789. https://doi.org/10.1103/PhysRevB.37.785.

[15] Petersson DA, Allaham MA. (1991). A complete basis set model chemistry. II. Openâ€shell systems and the total energies of the firstâ€row atoms. J. Chem. Phys. 94(9) : 6081-6090. https://doi.org/10.1063/1.460447.

[16] Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Mantzaris WAJ, Shirley WA, (1988). A complete basis set model chemistry. I. The total energies of closedâ€shell atoms and hydrides of the firstâ€row elements. J. Chem. Phys. 89(4): 2193-2218. https://doi.org/10.1063/1.455064.

[17] Scrocco E, Tomasi J. (1978). Electronic molecular structure. Advances in Quantum Chemistry, Academic Press, New York. 2: 115-193.

[18] Murray JS, Sen K. (1996). Molecular electrostatic potentials, concepts and applications, 3, Elsevier, Amsterdam. ISBN: 9780080536859.

[19] Curtiss LA, Redfern PC, Raghavachari K, Pople JA. (1998). Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities J. Chem. Phys. 42(1): 117-122. https://doi.org/10.1063/1.476538.

[20] Hohenberg P, Kohn W. (1964). Inhomogeneous electron gas. phys. Rev. 136(3B): 864-870. https://doi.org/10.1103/PhysRev.136.B864.

[21] Srivastava A, Rawat P, Tandon P, Singh RN. (2012). A computational study on conformational geometries, chemical reactivity and inhibitor property of an alkaloid bicuculline with γ-aminobutyric acid (GABA) by DFT Comput. Theor. Chem. 993: 80-89. https://doi.org/10.1016/j.comptc.2012.05.025.

[22] Ayres PW, Parr RG. (2000). Variational principles for describing chemical reactions: The fukui function and chemical hardness revisited. J. Am. Chem. Soc. 122(9): 2010-2018. https://doi.org/10.1021/ja9924039.

[23] Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK. (2003). Chemical reactivity profiles of two selected polychlorinated biphenyls. J. Phys. Chem. A 107(48): 10346-10352. https://doi.org/10.1021/jp035620b.

[24] Reed AE, Curtiss LA, Weinhold F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88(6): 899-926. https://doi.org/10.1021/cr00088a005.

[25] Foster JP, Weinhold F. (1980). Natural hybrid orbitals. J. Am. Chem. Soc. 102(24): 7211-7218. https://doi.org/10.1021/ja00544a007.

[26] Weinhold F, Landis CR. (2005). Valency and Bonding: A natural bond orbital donor-acceptor perspective, Cambridge University Press, New York. ISBN 9780521831284. https://doi.org/10.1017/CBO9780511614569.

[27] Ravikumar C, Padmaja L, Hubert Joe I. (2008). Analysis of vibrational spectra of L-Alanyl glyciene based on density functional theory calculations. Spectrochimica. Acta Part A. 71(1): 252-262. https://doi.org/10.1016/j.saa.2007.12.019.

[28] Arul Dhas D, Hubert Joe I, Roy SDD, Freeda TH. (2010). DFT computations and spectroscopic analysis of a pesticide: Chlorothalonil. Spectrochimica. Acta. Part A. 77(1): 36-44. https://doi.org/10.1016/j.saa.2010.04.020.

[29] Sun Y, Chen X, Sun L, Guo X, Lu W. (2003). Nanoring structure and optical properties of Ga8As8. Chem. Phys. Lett. 381(3-4): 397-403. https://doi.org/10.1016/j.cplett.2003.09.115.

[30] Hald K, Pawłowski F, Jørgensen P. (2003). Calculation of frequency-dependent polarizabilities using the approximate coupled-cluster triples model CC3. The Journal of Chemical Physics. 118(3): 1292-1300. https://doi.org/10.1063/1.1523905.

[31] Kleinmann DA. (1962). Nonlinear dielectric polarization in optical media. Phys. Rev. 126(6): 1977-1979. https://doi.org/10.1103/PhysRev.126.1977.

Downloads

Published

2018-06-05

Issue

Section

Articles