The examination of the quotient of numerical semigroup with RF-matrices

Authors

  • Belgin Özer gaziantep university
  • Fatima Dakkak gaziantep university

DOI:

https://doi.org/10.14419/gjma.v10i1.32007

Published:

2022-04-27

Keywords:

Quotient of A Numerical Semigroup, Pseudo-Frobenious Number, RF (Row Factorization) Matrices.

Abstract

In this paper, we study quotients of a numerical semigroups with RF (Row-Factorization) matrices. We prove a formula for the Frobenious number of quotients of some families of numerical semigroups. Moreover, we examine half of the numerical semigroups, pseudo-symmetric numerical semigroups.

References

[1] J. C. Rosales, J. M. Urbano-Blanco, Proportionally modular Diophantine inequalities and full semigroups, Semigroup Forum 72 (2006), 362-374 https://doi.org/10.1007/s00233-005-0527-8.

[2] A. M. Robles-P´erez, J. C. Rosales, Equivalent proportionally modular Diophantine inequalities, Archiv der Mat

[3] J.C. Rosales, P. A. Garcia-Sanchez, Every numerical semigroup is one half of infinitely many symmetic numerical semigroups, to appear in Comm. Algebra.

[4] J. C. Rosales, One half of a pseudo-symmetric numerical semigroup, preprint.

[5] J.C. Rosales, P. A. Garcia-Sanchez, J.I.Garcia-Garcia, J. M. Urbano-Blanco, proportionally modular Diophantine inequalities,J.Number Theory 103 (2000),281-294. https://doi.org/10.1016/j.jnt.2003.06.002.

[6] J.C. Rosales, P. A. Garcia-Sanchez, Every numerical semigroup is one half of infinitely many symmetic numerical semigroups, Commun .Algebra 36 (2008) , 2910-2916. https://doi.org/10.1080/00927870802108171.

[7] J.C. Rosales, P. A. Garcia-Sanchez, Every numerical semigroup is one half of a symmetic numerical semigroups, Proc.Amer.Math.Soc.136 (2008) , no.2,477-457. https://doi.org/10.1090/S0002-9939-07-09098-3.

[8] A. Moscariello , On the type of an almost gorenstein monomial curve .Journal of Algebra 456,266-277 (2016) . https://doi.org/10.1016/j.jalgebra.2016.02.019.

[9] J.C. Rosales, P. A. Garcia-Sanchez, Numerical Semigroup ,Springer Developments in Mathematies ,Volume 20,(2009).

View Full Article: