Extensive analysis of slip power recovery scheme

Ratansingh Atkar 1*, B. Chandramouli 2

1Assistant professor in AMBO University, Ethiopia.
2Assistant professor in Adama Science and Technology University, Ethiopia.
*Corresponding author E-mail: ratansingh.atkar@gmail.com

Abstract

Enlistment engines square measure the foremost typically used engines in mechanical movement management frameworks. The slip management healing conspire (SPRS) offers speed management of connective hitch engine (SRIM) below synchronous speed. The slip management healing drives is employed as a neighborhood of huge limit pumps and fan drives, shipboards VSCF (variable-speed/consistent recurrence) frameworks, variable-speed hydro pumps/generators thus forth. throughout this paper Associate in Nursing thorough investigation of slip management healing conspire is displayed. reproduction of the originated is finished utilizing MATLAB/SIMULINK condition and trial established is prepared up at intervals the centre for a 2 H.P. engine. The trial and reproduction comes concerning square measure investigated.

Key words: Analysis, Feedback Power, Simulation, Slip control recuperation plot, Matlab/Simulink

1. Introduction

To control the speed of SRIM with higher efficiency and better performance, a shot was created by Scherbius and Kramer to exchange the additional resistances from the rotor circuit with the help of recovered rotor slip power exploitation auxiliary machines. This contend an enormous role in enhancing the event of electrical drive systems exploitation induction motors. Use of static convertover over digital and semiconductor device techniques square measure it's versatile, simple, economical, and consumes less hardware. throughout this work, steady state relationships between converter firing angle force, speed, and device current for the SPRS square measure derived. it has been determined that the drive offers linear torque- current relationship form of a severally excited DC motor.

In this paper, a comprehensive analysis of slip power recovery theme is given. The theme is simulated exploitation MATLAB/SIMULINK setting. The results square measure valid with the experimental set-up results exploitation microcontroller as firing angle controller for the converter circuit. The advantage of exploitation microcontroller

![Fig. 1. Basic slip power recovery scheme](image-url)

Fig. 1. Basic slip power recovery scheme
2. Performance analysis of scheme

The basic slip power recovery scheme mistreatment static Kramer drive is shown in Fig. 1. throughout this scheme a voltage ViR is applied to the connective terminals, in section with the rotor current through recovery device & line commutated converter, that the effective equivalent circuit of the drive is delineated as:

\[
\begin{align*}
V_i & = \frac{V_{ir}}{a_{eff}} \\
\text{Above equation gives the following equivalent circuit:}
\end{align*}
\]

Fig. 2. Voltage injection in rotor circuit

The injected voltage can be referred to the stator as:

\[
V_i = V_{ir} \frac{a_{eff}}{R_s}
\]

Fig. 3. Equivalent circuit refer to Stator

Considering the given equivalent circuit, if the injected voltage is Vi/s increased, the rotor current Ir ar reduced, resulting in a reduction at intervals the on the market torsion generated by the motor. If there is a load applied to the motor, the rotor will block, resulting in an increase in slip. As slip can increase, the effective voltage seen by the computer ar reduced (the actual voltage physically induced at intervals the rotor, due to the computer, will therefore the DC link voltage can be found from the diode input line electrical converter voltage as:

\[
V_{dc} = \frac{3\sqrt{2}}{\pi} V_{LLIR} \cos \alpha = \frac{3\sqrt{2}}{\pi} V_{LLIR} |\cos \alpha|
\]

2.1 Exploration of operation

To change the analysis, assumptive that the magnetizing physical phenomenon is affected to the terminals of the equivalent circuit. (Otherwise, the computer half voltage, computer physical phenomenon and magnetizing physical phenomenon are going to be replaced by a The venin equivalent provide and physical phenomenon.).

\[
\text{Power and Torque}
\]

The air gap power of the machine may be written as

\[
P_{gap} = 3l_y (l_y R_y + V_i) s
\]

Breaking this equation into components, it will be seen that the air gap power is that the total of rotor resistive losses, power recovered through the slip rings and therefore the mechanical power made.

\[
P_{gap} = 3l_y R_y + 3l_y V_i + 3l_y (l_y R_y + V_i) s
\]

Using the expression for air gap power, the torque may be written as

\[
\tau = 3l_y \frac{(l_y R_y + V_i)}{s \omega_s}
\]

Now, subbing the slip expression into the torsion expression offers the result that torsion is barely a perform of rotor current, not slip or injected voltage:

\[
\tau = 3l_y \frac{(V_i^2 - l_y^2 [X_{ls} + X_{ly}]^2 s)}{s \omega_s}
\]

The expression on top of means for a given force, the rotor current can forever be constant, freelance of speed. The voltage at the input to the diode rectifier is given by:

\[
V_{LLIR} = \frac{V_i}{a_{eff}}
\]

The dc link voltage can be found from the diode input line-line voltage as:

\[
V_{dc} = \frac{3\sqrt{2}}{\pi} V_{LLIR} \cos \alpha = \frac{3\sqrt{2}}{\pi} V_{LLIR} |\cos \alpha|
\]

Fig. 4: Approximate equivalent circuit refer to Stator
Substituting the above expressions, the voltage injected into the rotor can be calculated as:

\[V_i = \frac{a_{eff}}{\sqrt{3}} V_{LLine} | \cos \alpha | \]

In the case that the electrical converter line-line voltage is connected to the availability through an electrical device, as shown within the diagram higher than, the injected voltage is involving the availability voltage as:

\[V_i = \frac{a_{eff}}{\sqrt{3}} \frac{N_{inv}}{N_{Line}} V_{LLS} | \cos \alpha | \]

Using this simplified analysis alongside the slip power recovery force equations, the thyristor firing angle needed for a selected force at a selected speed may be found.

\[\alpha = \frac{90^\circ}{2} < \alpha_1 < \alpha_2 < 180^\circ \]

Efficiency

Since variety of the flexibility equipped to the motor is recovered from the rotor circuit, the efficiency cannot be calculated as just output power over input power. Instead, in associate degree passing slip power recovery drive the efficiency is:

\[\eta = \frac{P_{out}}{P_{in} - P_{recovered}} \]

Here, \(P_{recovered} \) is the effective recovered power at the stator coil terminals. Because the power recovered from the rotor is feedback to the stator coil once more, the drive has higher potency as compared to rotor resistance methodology.

3. Experimental Set-Up & implementation of scheme

For developing the experimental set-up, power diodes & thyristors of sixteen amperes area unit used for the device and line commutated converter circuits severally. A filter inductance of twenty 5 mH has been connected. The experimental set-up of the firing circuit of the drive is microcontroller based. Three vary of single-phase; star-star connected decrease transformers area unit accustomed get synchronous reference signals from the provision. The signal procurable from each electrical device has been fed to a high gain operational equipment LM324 consisting of four-freelance internal channels. The zero crossing of each half is detected here and so the quadrangle output signals from LM324 square measure fed to the microcontroller unit. Low power, high performance forty pin, CMOS, 8-bit microcontroller Microcontroller ATMEL AT89S52 has been accustomed end up firing pulses

4. Simulation of Scheme

To study the performance of the drive, a simulation block-set in Matlab/Simulink has been implemented as shown in Figure seven. A 2 HP, 400 V, fifty cycle wound rotor induction motor has been used for the simulation. Provision has been created to measure mechanical device current, speed and force of the motor. The active and reactive power input of the motor, the recovery device and additionally the availability ar measured exploitation P-Q block. Provision has jointly been created to measure fully completely different voltages and currents of the theme wherever required. the data has been saved to the area for any analysis. various parameters of the model ar given in Appendix-A.

5. Simulated & experimental results

5.1 Results & analysis of simulation work

Simulation results show that by varied firing angle (above ninety degree in very little intervals), motor speed is also controlled from zero to nominal speed. The motor speed vs. time characteristics at two completely completely different firing angles square measure shown in Figure eight. it’s going to be discovered that steady state speed for higher firing angle could be a smaller quantity as compared to lower firing angle. The upper value of firing angle is restricted to 165˚ for the safe commutation of thyristors [16].

Fig. 6: Experimental Set-up of the Scheme

Fig. 7: Simulation circuit for slip power recovery scheme

Fig. 5: Torque-speed characteristics of the drive

No-Load Condition

Consider again the expression for slip:

\[S = \frac{V_i + I_r R_f}{\left(V_i^2 - I_r^2 (X_{ls} + X_{lr})^2\right)^{1/2} - I_r R_s} \]

If the torque is zero, then the rotor current will also be zero and at zero torque, the slip is given by:

\[S_0 = \frac{V_i}{V_s} \]

Fig. 8: Motor speed vs. time characteristics at two firing angles
5.2 100-degree firing angle

Moreover, convertor circuit consumes negative active power and positive reactive power from line aspect as shown in Figure 9. this implies that active power is came back to the network, but associate outsized amount of reactive power is absorbed from the provision. as a result of the reactive power consumption, the power issue of the theme becomes low.

5.3 Inverter

The presence of power device and convertor circuit throughout this method, in addition cause low frequency odd harmonics (3rd, 5th, seventh ...) injection to the supply network. Motor force, feedback current and provide current waveforms area unit shown in Figure 10.

It ar usually discovered that torsion created by the motor is not constant but metrical. It will even be ascertained that the feedback current and additionally the availability current waveforms unit of measurement distorted. This leads to inflated force ripple and consequently motor temperature is inflated. The academic degree of the availability current has been found to be eleven.57%. The non-incurate stator and convertor feed-back current have a bearing on line-side current and injects harmonics at intervals the supply network.

Fast Fourier process (FFT) window of offer current wave kind has been shown in Figure eleven. It ar usually discovered that it consists of sub-harmonic love dc part, twenty 5 Hertz and multiple harmonics love higher order (third, fifth and seventh etc) harmonics.

It may be any discovered that, fifth and seventh harmonics ar the dominant one.

Results & analysis of Experimental work:
The performance characteristics of the drive have in addition been analyzed pattern the experimental set-up. The variation of the rotor speed w.r.t. a) firing angle & b) inductance current has been shown in Figure twelve a) and twelve b) severally.
5.4 Inductance current

The input power of the drive with and whereas not slip power recovery has been shown in Figure 13. If we've got a bent to neglect the convertor and device losses, we'll notice that for an analogous load, the input power taken from the availability with slip power recovery theme could be a smaller quantity than that of power consumed whereas not slip power recovery theme.

![Fig. 13. Input power of drive](image)

Hence AN overall increase in potency is obtained.

6. Conclusions

In this paper, the slip power recovery methodology for the speed management of three-phase connective induction motor has been investigated. The performance equations area unit drawn and a simulation block-set model in Matlab/Simulink has been enforced.

A microcontroller based open-loop speed management experimental set-up has jointly been developed inside the laboratory. The following conclusions area unit drawn from the study:

1. The torsion of the drive varies linearly with the dc link current. Hence, the drive has similar characteristics as that of severally excited dc motor.
2. The increase in efficiency has been determined as compared to rotor resistance methodology of speed management.
3. The simulation/experimental results show the overall reduced power issue of the drive.
4. Presence of device and line commutated converter results in harmonic injection on the provision side.
5. Presence of current harmonics in stator and rotor windings causes further heating of motor. Thus, de-rating of the drive is required for constant load as compared to rotor resistance management technique.

Appendix-A

Slip ring induction motor: 3-phase, 2 HP, 400 volt, amps, 50 Hz, 1440 rpm, Y-Y connected. Parameters: mechanical device resistance = four 8 Ω; Rotor resistance = 4.2 Ω; Stator leakage reactance = 9.5 Ω; Rotor leakage reactance = 9.5 Ω; Magnetizing reactance =185 Ω; Stator to rotor turn ratio = 5. Magneti

Other Parameters of the drive system:

- Turns relation of recovery device (inverter to line side) = zero.2;
- Resistance of smoothing inductor = 2 Ω; Inductance of smoothing inductor = 0.025 H

References