Interval-Valued Intuitionistic Fuzzy INK-Ideals of INK-Algebra

Indhira. K1, Kaviyarasu. M2, Chandrasekaran. V. M3

1Associate Professor of Mathematics
2Research scholar of mathematics
3Professor of Mathematics
Vellore Institute of Technology
Vellore 632014, Tamilnadu, India.

Abstract

Mathematical structures of Interval valued IF INK-ideal on INK-algebras are presented. We established that every IF- (INK)-ideal of an INK algebra A can be executed as an level ideal (INK) of an IF(INK) of U. As far as the idea of homomorphism, we talked about the cartesian result of i-v IF(INK)- ideal.

Keywords: INK-algebra, INK-ideal, fuzzy INK-ideal, IF INK-ideal, Interval-valued fuzzy INK-ideal, Interval-valued intuitionistic fuzzy INK-ideal

1. Introduction

Several researchers have developed algebraic structures. Imai and Iséki (1966) proposed two algebraic structure BCI and BCK-algebras. Then Hu and Li (1983) are expanding algebra is called BCH-algebra, which is a generalization of BCK- and BCI-algebras. J. Næs and H. S. Kim (1999) introduced d-algebras and studied the relationship flanked by d-algebras and BCH-algebras. Conceptual Fs and i-v Fs are then introduced by Zadeh (1982). Zadeh also used his i-v Fs to construct an near reasoning system. In addition, Attansouv (1986) introduced the concept of Intuitive Fuzzy Sets (IFs) and Interval-valued IVIFS as a generalization of ordinary FS. Attassouv and Gargov [1989] show that IFs and IVIFS are equal probability generalizations of FS. In this paper, we first introduce an i-v IF INK-ideal INK-algebra. Then we prove that each intuitionistic fuzzy INK ideal of INK algebra A can be executed as the ideal INK ideal of intuitionistic fuzzy INK- U. In relation to the concept of homomorphism, we study the Cartesian product of the interval. Pay attention to intuitionistic fuzzy INK-ideal.

2. Preliminaries

Definition 2.1: A INK-algebra $(U, \cdot, 0)$ is a nonvoid set U with a non-varying value 0 and a binary operation \cdot fulfilling the additional adages

i) $a \cdot 0 = a$

ii) $(b \cdot a) \cdot (b \cdot c) = a \cdot c$ $\forall a, b, c \in U$.

In U we can regulate a binary association by $a \leq b$ if and only if $a \cdot b = 0$.

The nonvoid subset T of INK-algebra $(U, 0)$ is called sub-algebra of U, and if it is $a \cdot b \in T$, $\forall a, b \in T$.

Let S be a nonvoid subset of U. Then S is called a INK-ideal of $(U, 0)$ if (1) $0 \in A$, (2) $(c \cdot a) \cdot (c \cdot b) \in S$ and $c \in S \iff c \in S, \forall a, b, c \in U$.

Definition 2.4: Let U be a universe set, χ be a Fs in U is a mapping $\chi: U \rightarrow [0,1]$.

Definition 2.2: A Fs χ in a INK-algebra X is called a fuzzy subalgebra of U if $\chi(a \cdot b) \geq \min \{ \chi(a), \chi(b) \}, \forall a, b \in U$.

Definition 2.3: A IFs χ is in the nonvoid U, in the form $\{U, \chi_a, \chi_b, \chi_c\} : x \in U | \chi_a : U \rightarrow [0,1]$ and $\lambda : U \rightarrow [0,1]$ means the degree of membership of each member $x \in U$ (ie. $\chi_a(a)$ and the degree of non-membership (in particular, $\delta_a(a), 0 \leq \chi_a(a) \leq \delta_a(a) \leq 1, \forall x \in U$. We use the character $\chi = \{U, \chi_a, \delta_a\}$ for IFs $A = \{U, \chi_a, \delta_a\}$.

Definition 2.4: The IFs $\chi = \{U, \chi_a, \delta_a\}$ in a INK-algebra U is called an IF INK-ideal of U if

1. $\chi_a(0) \geq \chi_a(a)$ in addition $\delta_a(0) \leq \delta_a(a)$
2. $\chi_a(a) \geq \min \{ \chi_a(c \cdot a) \cdot (a \cdot b), \chi_a(b) \}$
3. $\delta_a(a) \leq \max \{ \delta_b(c \cdot a) \cdot (a \cdot b), \delta_b(b) \}, \forall a, b, c \in U$.

3. I-v IFs -ideals (INK)

Definition 3.1: An i-v IFs in INK-algebra U is called an i-v IF INK-ideal of U if it satisfies,

1. $\chi_a(0) \geq \chi_a(a)$, $\delta_a(0) \leq \delta_a(a)$
2. $\chi_a(a) \geq \min \{ \chi_a((c \cdot a) \cdot (c \cdot b)), \chi_a(b) \}$
3. $\delta_a(a) \leq \max \{ \delta_b((c \cdot a) \cdot (c \cdot b)), \delta_b(b) \}$

Example 3.2.

Discuss the following table of INK-Algebra: $U = \{0, p, q, r\}$.

<table>
<thead>
<tr>
<th>χ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Let A be an i-v IF in \mathfrak{B} by
$$\begin{align*}
\psi_A(x) &= \begin{cases}
0 & \text{if } [0,0.6,0.8]
0.4, 0.5]
0.3, 0.4] \end{cases}
\phi_A(x) &= \begin{cases}
0 & \text{if } [0,0.3, 0.4]
0.5, 0.7]
0.4, 0.6] \end{cases}
\end{align*}
$$
Then routine calculations give that A is an i-v intuitionistic fuzzy INK ideal of U.

Theorem 3.3. Let τ be an i-v IF INK-ideal of U. If there exists a sequence $\{x_n\}$ in τ such that $\lim_{n \to \infty} x_n = [1,1]$, $\lim_{n \to \infty} \tau(x_n) = [0,0]$. Then $\overline{\tau}(0) = [1,1]$ and $\tilde{\tau}_i(0) = [0,0]$.

Proof. Since $\overline{\tau}(x) \leq \overline{\tau}(x)$ and $\tilde{\tau}_i(x) \leq \tilde{\tau}_i(x) \forall x \in U$. We have $\overline{\tau}(0) \geq \overline{\tau}(x) \land \tilde{\tau}_i(0) \leq \tilde{\tau}_i(x)$, n is a positive integer.

Note that $[1,1] \geq [\overline{\tau}(x), \tilde{\tau}_i(x)]$. If $n \geq [\overline{\tau}(x), \tilde{\tau}_i(x)]$ is an IF of U.

Let $x, y \in U$, then
$$\begin{align*}
\overline{\tau}(x) &= \min \{[\overline{\tau}(x), \overline{\tau}(x)], [\overline{\tau}(x), \overline{\tau}(x)]\} = \min \{[\overline{\tau}(x), \overline{\tau}(x)], [\overline{\tau}(x), \overline{\tau}(x)]\}
\end{align*}
$$

And all of these τ is an i-v IF of U. TUYT8777Y9698689

Similarly, expect that A is an i-v IF of U.

Proposition 3.7. Every i-v IF INK-ideal of a INK-ideal algebra U is i-v IF sub algebra of U.

4. Product of i-v intuitionistic fuzzy INK-ideal

Definition 4.1. An IF, \varnothing on any set is a i-v IF subset A with a membership function $HWHWVHWHVHJVHJ: \mathbb{U} \times [0,1]$ and a non-membership function $XHCHFTS6988=5654 \forall x, y \in \mathbb{U}$, where $\varnothing \{U \times V \}$.

Definition 4.2. Let $\hat{u} = \{\hat{u}_i, \hat{u}_i\}$ and $\hat{w} = \{\hat{w}_i, \hat{w}_i\}$ be two i-v IFs in a set U. The product of $\hat{u} \times \hat{w}$ is defined by $GTU990$.

Theorem 3.4. An i-v IF IF $\tau = \{[\overline{\tau}(x), \tilde{\tau}_i(x)]\}$ is an i-v intuitionistic fuzzy INK ideal of U if and only if $\overline{\tau}(x)$ and $\tilde{\tau}_i(x)$ are IF of U.

Proof. Since $\overline{\tau}(x) = \min \{[\overline{\tau}(x), \overline{\tau}(x)], [\overline{\tau}(x), \overline{\tau}(x)]\}$ and $\tilde{\tau}_i(x) = \max \{[\tilde{\tau}_i(x), \tilde{\tau}_i(x)], [\tilde{\tau}_i(x), \tilde{\tau}_i(x)]\}$.

Along these lines, τ is an i-v IF of U. TUYT8777Y9698689

Proposition 3.5. Every i-v IF INK-ideal of a INK-algebra U is an i-v IF.

Definition 3.6. An IF τ in U is called an interval-valued intuitionistic fuzzy INK-sub algebra of U if
i) $\overline{\tau}(x, y) \geq \max \{\overline{\tau}(x), \overline{\tau}(y)\}$ and
ii) $\tilde{\tau}_i(x, y) \leq \max \{\tilde{\tau}_i(x), \tilde{\tau}_i(y)\}$, $\forall x, y \in U$.
Definition 4.4. Let $\overrightarrow{\omega}$ and $\overleftarrow{\omega}$ respectively be an i-v membership and non-membership function of every element $x \in U$ to the set ω. Then strongest i-v IFS relation on U, that is a membership function relation $\overrightarrow{\omega}$ and $\overleftarrow{\omega}$ whose i-v membership and non-membership function of every element $(x, y) \in U \times U$ and defined by

i) $\overleftarrow{\omega}(x, y) = \min\{|\overleftarrow{\omega}(x), \overleftarrow{\omega}(y)|$ and

ii) $\overrightarrow{\omega}(x, y) = \max\{|\overrightarrow{\omega}(x), \overrightarrow{\omega}(y)|$

Definition 4.5. Let $\phi = \{(\overrightarrow{\phi}, \overleftarrow{\phi}) : (u, v) \in U \times U\}$ be an i-v subset in a set U, then the strongest i-v IFS relation on U that is a i-v A on ω is ϕ and defined by

$\delta_{\phi} = \{(\mu_{\phi}(x, y), \mu_{\phi}(x, y)) : (u, v) \in U \times U\}$

Theorem 4.6. Let $\phi = \{(\overrightarrow{\phi}, \overleftarrow{\phi}) : (u, v) \in U \times U\}$ be an i-v subset in a set U and be the strongest i-v IFS relation on U, at that point ϕ is an i-v INK-ideal of U if and only if ϕ is an i-v INK-ideal of UxU.

Proof. Let B be an i-v IF INK-ideal of U,

$\overrightarrow{\omega}(0, 0) = \min\{|\overrightarrow{\omega}(0), \overrightarrow{\omega}(0)|$

Furthermore, $\max\{|\overrightarrow{\omega}(0), \overrightarrow{\omega}(0)| = \overrightarrow{\omega}(0, 0)$

and

$\delta_{\phi}^*(0, 0) = \max\{|\delta_{\phi}(0), \delta_{\phi}(0)|$

On the other hand,

$\overrightarrow{\omega}(x, y) = \min\{|\overrightarrow{\omega}(x, y), \overrightarrow{\omega}(y)|$

$r \min\{|\overrightarrow{\omega}(x, y), \overrightarrow{\omega}(y)|$

Also,

$\overleftarrow{\omega}(x, y) = \max\{|\overleftarrow{\omega}(x, y), \overleftarrow{\omega}(y)|$

$r \min\{|\overleftarrow{\omega}(x, y), \overleftarrow{\omega}(y)|$

Equally, let δ_{ϕ} be an i-v IF-ideal (INK) of UXU.

$x, y \in U \times U$. Then

$r \min\{|\delta_{\phi}(x, y), \delta_{\phi}(y)|$

and

$\delta_{\phi}(x, y) \leq \delta_{\phi}(y)$

$r \min\{|\delta_{\phi}(x, y), \delta_{\phi}(y)|$

$r \min\{|\delta_{\phi}(x, y), \delta_{\phi}(y)|$

Hence complete the proof.
Theorem 4.9. If \(\tilde{X}_\phi \) is also an i-v IF INK-ideal of \(U \), then \(\tilde{X}_{\phi\omega} \) is also an IF INK-ideal of \(U \).

Proof. For all \(x, y, z \in U \).

\[
\begin{align*}
\tilde{X}_{\phi\omega}(0) & \geq \tilde{X}_\phi(x) \\
\min \{ \tilde{X}_\phi(x), \tilde{X}_\omega(y) \} & \geq \min \{ \tilde{X}_{\phi\omega}(x), \tilde{X}_{\phi\omega}(y) \}
\end{align*}
\]

Also,

\[
\begin{align*}
\tilde{d}(x) & \leq \tilde{d}(x) \\
\tilde{d}(x) & \leq \tilde{d}(x) \\
\tilde{d}(x) & \leq \tilde{d}(x) \\
\tilde{d}(x) & = \tilde{d}(x)
\end{align*}
\]

5. Homomorphism of i-v Intuitionistic fuzzy INK-Algebra

Definition 5.1. Let \((U, \cdot, 0)\) and \((V, \cdot, 0)\) be INK-algebras. A function \(\phi: U \to V \) is called a homomorphism if

\[
\phi(x \cdot y) = \phi(x) \cdot \phi(y), \quad \forall x, y \in U.
\]

For any interval-valued IF \(X = (V, \tilde{X}_\phi, \tilde{d}_\phi) \) in \(V \) we define a new i-v IF \(\hat{X} = (U, \hat{X}_\phi, \hat{d}_\phi) \) in \(U \) by

\[
\hat{X}_\phi = \tilde{X}_\phi(\phi(x)) \quad \text{and} \quad \hat{d}_\phi = \tilde{d}_\phi(\phi(x)).
\]

Theorem 5.2. Let \((U, \cdot, 0)\) and \((V, \cdot, 0)\) be INK-algebras. An onto homomorphic image of an i-v IF INK-ideal of \(U \) is also an i-v IF INK-ideal of \(V \).

Proof. Let \(\psi: U \to V \) be an onto homomorphism of INK-algebras. Suppose \(\chi = (V, \tilde{X}_\phi, \tilde{d}_\phi) \) is the image of an i-v IF INK-ideal \(\rho = (U, \tilde{X}_\phi, \tilde{d}_\phi) \) of \(U \). We have to prove that \(\rho = (V, \tilde{X}_\phi, \tilde{d}_\phi) \) is an i-v IF INK-ideal of \(V \). Since \(h: U \to V \) is onto, then \(x, y, z \in V \) there exist \(x, y, z \in U \) such that \(\phi(x) = x \) and \(\phi(y) = y \) also we study \(\phi(z) = 0 \).

Then,

\[
\begin{align*}
\tilde{X}_\phi(0) & = \tilde{X}_\phi(0) \\
\tilde{d}_\phi(0) & = \tilde{d}_\phi(0) \\
\tilde{d}_\phi(y) & \geq \tilde{d}_\phi(x)
\end{align*}
\]

Also,

\[
\begin{align*}
\tilde{d}_\phi(x) & = \tilde{d}_\phi(x) \\
\tilde{d}_\phi(y) & = \tilde{d}_\phi(y)
\end{align*}
\]

Hence \(A = (V, \tilde{X}_\phi, \tilde{d}_\phi) \) is an i-v IF INK-ideal of \(U \).

Theorem 5.3. Let \((X, \cdot, 0)\) and \((Y, \cdot, 0)\) be INK-algebras. An onto homomorphic inverse image of an i-v IF INK-ideal of \(V \) is also an i-v IF INK-ideal of \(U \).

Proof. Let \(\psi: U \to V \) be an onto homomorphism of INK-algebras. Suppose \(\psi = (X, \psi \tilde{X}_\phi, \psi \tilde{d}_\phi) \) is the inverse image of an i-v IF INK-ideal \(\chi = (V, \tilde{X}_\phi, \tilde{d}_\phi) \) of \(V \).

For any \(x, y, z \in V \) there exist \(x, y, z \in U \) such that \(\psi(x) = x \) and \(\psi(y) = y \) and \(\psi(z) = 0 \).

\[
\begin{align*}
\tilde{X}_\phi(0) & = \tilde{X}_\phi(0) \\
\tilde{d}_\phi(x) & = \tilde{d}_\phi(x)
\end{align*}
\]

implies that \(\psi \tilde{X}_\phi(0) = \psi \tilde{X}_\phi(x) \) and \(\psi \tilde{d}_\phi(x) = \tilde{d}_\phi(x) \).
\[\leq \bar{\sigma}(x) \]
\[= \bar{\sigma}(\psi(x)) \]

Implies that \(\psi \bar{\sigma}(0) = \psi \bar{\sigma}(x) \).
\[\psi \bar{\sigma}(x) = \bar{\sigma}(\psi(x)) \]
\[= \bar{\sigma}(x) \]

\[\psi \bar{\sigma}(x) = \min \{ \bar{\sigma}(z \cdot x) \cdot (z \cdot y), \bar{\sigma}(y) \} \]
\[= \min \{ \bar{\sigma}(\psi(z \cdot x) \cdot (z \cdot y)), \bar{\sigma}(\psi(y)) \} \]
\[= \min \{ \bar{\sigma}(\psi((z \cdot x) \cdot (z \cdot y))), \bar{\sigma}(\psi(y)) \} \]
\[\geq \min \{ \psi \bar{\sigma}(z \cdot x) \cdot (z \cdot y), \psi \bar{\sigma}(y) \} \]
and
\[\psi \bar{\sigma}(x) = \bar{\sigma}(\psi(x)) \]
\[= \bar{\sigma}(x) \]
\[\psi \bar{\sigma}(x) = \max \{ \bar{\sigma}(z \cdot x) \cdot (z \cdot y), \bar{\sigma}(y) \} \]
\[= \max \{ \bar{\sigma}(\psi(z \cdot x) \cdot (z \cdot y)), \bar{\sigma}(\psi(y)) \} \]
\[= \max \{ \bar{\sigma}(\psi((z \cdot x) \cdot (z \cdot y))), \bar{\sigma}(\psi(y)) \} \]
\[\psi \bar{\sigma}(x) \leq \max \{ \psi \bar{\sigma}(z \cdot x) \cdot (z \cdot y), \psi \bar{\sigma}(y) \} \]

Therefore, complete the proof.

6. Conclusions

In this paper, we INK-algebra between the current value of the member and non-member functions of IF-INK classical with introducing the concept, and to study their properties.

References