A Note on Boolean Like Algebras

K.Pushpalatha1* V.M.L.Hima Bindu2

1Department of mathematics, KLEF, Vaddeswaram
2Department of mathematics, KLEF, Vaddeswaram
*Corresponding author E mail: kpushpamphil@gmail.com

Abstract

In this paper we develop on abstract system: viz Boolean-like algebra and prove that every Boolean algebra is a Boolean-like algebra. A necessary and sufficient condition for a Boolean-like algebra to be a Boolean algebra has been obtained. As in the case of Boolean ring and Boolean algebra, it is established that under suitable binary operations the Boolean-like ring and Boolean-like algebra are equivalent abstract structures.

Keywords: Boolean algebra; Boolean like algebra; Boolean like ring; Boolean ring;

1. Preliminaries

Following A.L.Foster’s, the concept of Boolean-like ring is as follows:

Definition 1.1: A Boolean-like ring R is a commutative ring with unity which satisfies the following conditions.

(1) a + a = 0, and
(2) a (1+a) b (1+b) = 0 for all a,b ∈ B.

we give some examples of Boolean-like rings.

Example 1.2: Every Boolean ring is a Boolean -like ring.

Proof: If B is a Boolean ring, then for all a ∈ B.

(a + a)2 = a + a. whence a2 + a + a2 + a2 = a + a
and so a + a + a + a = a + a. Thus a + a = 0.

Further a(1+a) = a + a = a + a.

Hence (a+ab+b) = 0, for all a,b ∈ B.

By a remark, B is a commutative ring with unity.

Thus B is a Boolean-like ring.

But the converse need not be true (For this refer example 1.4).

Example 1.3: Let R be a ring with unity and characteristic 2. Let B be the set of all central idempotent of R . Then B is a Boolean subring of R. Further B × R is a Boolean -like ring with addition and multiplication defined as follows:

(b1, r1) + (b2, r2) = (b1 + b2, r1 + r2)
(b1, r1)b2, r2) = (b1b2, b1r2+b2r1)

for all b1, b2 ∈ B and r1, r2 ∈ R

Proof: we first prove that B is a Boolean subring of R.

Let b1, b2 ∈ B.

We show that b1 - b2 ∈ B and

b1 - b2 ∈ B

(b1 - b2)2 = b1 - b2. (Since R has characteristic 2)

For a ∈ R . (b1 - a) = b1a - b1a

Hence b1 - b2 ∈ B.

Also, (b1 b2)2 = (b1 b2)(b1 b2) = b1(b2b1) = b1 (b1 b2) = b1 b2

Further (b1b2) = b1(b2 = b1(ab)) = (b1 a) b2 = a(b b2).

Hence b1 , b2 ∈ B.

Trivially 1 ∈ B and e2 = e for all e ∈ B.

Therefore B is a Boolean subring of R.

We now verify that B × R is a Boolean –like ring. For b1, b2 ∈ B and t1, t2, r1 ∈ R,

[(b1, t1) + (b2, t2)] + (b3, r3) = (b1, r1) + [(b2, t2) + (b3, r3)]

Hence ‘+’ is associative.

Now (0, 0) ∈ B × R and (b1, r1) + (0, 0) = (b1 +0 , r1+0) s = (b1 , r1)

Therefore (0, 0) is additive identity of B × R. For (b1 , r1) ∈ B × R

There exists (-b1 , -r1) ∈ B × R such that

(b1, t1) + (-b1 , -r1) = (b1 - b1 , t1 - r1) = (0 , 0)

Hence (-b1, b1) is the additive inverse of (b1, t1) (b1, r1)

For (b1, r1) + (b2, r2) = (b1+b2, r1+r2)

Therefore ‘+’ is commutative.

Thus (B×R, +) is an abelian group.

Now [(b1, r1), (b2, r2)] = (b1, t2) . (b1, t2)

= (b1b2, b2r1+ r2b1, r2r1)

= (b1, t2)(b2, r2)]

Hence ‘.’ is associative.

Also (1, 0) ∈ B × R and (b1, r1) (1, 0) = (b1, r1)

Further (b1, t1, b2, r2) = (b1, t1+b2, r1) = (b1, t1+b2, r2)

(b1, r1) . (b2, r2)

To prove the distributive law.

Consider (b1, t1) (b2, r2) + (b3, r3)]

= (b1, r1) (b2 +b2, r2 + r3)

=F(b1b2+b3, b1r2+b3r1)

Furthermore, (b1, t1) (b2, r2) + (b1, r1)(b2, r2) = (b1b2, b2r1+b3, r2) + (b1b2, b2r1+b3, r2)

= (b1b2+b1b2, b2r1+b2r1+b3, r2)

Therefore (B×R, +, ·) is a commutative ring with unity.

Suppose (b1, r1) ∈ B × R.

Since R is a ring of characteristic 2,

(b1, r1) + (b1, r1) = (b1, r1, r1) = (0, 0)

Also, (b1, r1) (1, 0) + (b2, r2) [(1, 0) + (b1, r1)] (b2, r2) [(1, 0) + (b2, r2)]
(0, r₁) (0, r₂) = (0, 0)

Hence B×R is a case of Example 1.3, we have the following

Example 1.4: Let Z₂ = [0,1] be the ring of integers modulo 2. Then Z₂ is a commutative ring with unity and its characteristic is 2. Obviously Z₂ is a Boolean ring. Hence Z₂×Z₂ is a Boolean-like ring under the operations of addition and multiplication defined as in example 1.3 above. This Boolean-like ring is denoted by H₂. Write 0 = (0,0), 1 = (1,0), p = (0,1) and q = (1,1).

Thus H₂ = [0, 1, p, q] and addition and multiplication tab les of H₂ are as follows

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>q</td>
<td>p</td>
<td>q</td>
<td>q</td>
<td>p</td>
<td>q</td>
</tr>
</tbody>
</table>

Obviously H₂ is not a Boolean ring.

Theorem 1.5: Each element ‘a’ of a Boolean-like ring B satisfies a.e = a.

Proof: We have that a(1+a)b = 1

By taking a = b in (i), we get that a(1+a) = 0

⇒ a = a*, since the characteristic of B is 2.

2. Boolean Like Algebras

We now give the following definition:

Definition 2.1: An algebraic structure (A, ∧, ∨,0,1) where ∧ and ∨ are binary operations, 0 and 1 are elements of A, is called a Boolean-like algebra if the following conditions are satisfied

(1) ∧, ∨ are associative and commutative
(2) (a ∨ b) = a∧b ; (a) = a ; 0 = 1
(3) a ∧ 0 = 0 ; a ∧ 1 = 1
(4) a ∧ = a ∧ (b ∨ c)
(5) a ∧ a ∧ b ∧ c = 0
(6) (a ∧ a) = 0
(7) a ∨ b = a ∨ (a ∧ b)
(8) [(a ∨ b) ∧ (a ∨ b)] = (a ∨ b)
(9) (a ∧ b) = (a ∧ b)

The following result gives the most important elementary properties of elements in a Boolean-like algebra.

Lemma 2.2: In any Boolean-like algebra A, we have the following

(i) a = 0
(ii) a = 1
(iii) a = a
(iv) a = a
(v) a(va) = (ava) = 0
(vi) (a(a) = (a(aa) = 1

Proof: (i) By (2) and (3) of definition 2.1
(a ∨ 0) = a ∨ 0 = a ∨ 1 = a. Hence a ∨ 0 = (a ∨ 0) = (a) = a
By (2) of definition 2.1, we have that
(ii) 0 = (0) = 1
(iii) a = [a ∨ 1] = (a ∨ 0) = 0 = 1
(iv) a = (a ∨ b) = (a ∨ b) = a ∨ b
(v) By taking b = a in (7), we get that
(a ∨ a) = (a ∨ a) = (a ∨ a)

Remark 2.3: Every complemented distributive lattice is a Boolean-like algebra.

Proof: Let (L, ∧, ∨,0,1) be a complemented distributive lattice. By the definition of a complemented distributive lattice the conditions (1)∧ (6) of a Boolean-like algebra are satisfied.

Therefore 1 = 0, 1 = 0, a ∧ b = a ∧ b, a ∨ b = a ∨ b, a ∨ b = a ∨ b.

Hence L is a Boolean-like algebra.

Theorem 2.4: A Boolean-like algebra (A, ∨,0,1) is a Boolean algebra if and only if a ∧ a = a for all a ∈ A.

Proof: Suppose a ∧ a = a = a for all a ∈ A. Then (A, ∧) is a semilattice. By (5) of definition 1.1 × ∨ x = 0, for all x ∈ A. Also, By (iv) of lemma 2.2,

i = 0, x = 0, and a = a = a = a = a = a

Conversely, if a ∧ b = a ∧ b, then a ∧ b = a ∧ b = a ∧ b = 0, 0 = 0.
Thus, (A, ∧,0) is a Boolean algebra. Conversely, if (A, ∧,1) is a Boolean algebra, then a ∧ a = a for all a ∈ A.

Corollary 2.5: A Boolean-like algebra is a complemented distributive lattice 0 ∧ 0 = a, for all a.

Proof: Let B be a Boolean-like algebra. If B is a complemented distributive lattice, then evidently, a ∧ a = a = a. Conversely suppose that a ∧ a = a for all a ∈ B.

By the above theorem B is a Boolean algebra. Then, by the theorem [1], B is a complemented distributive lattice.

We now prove that every Boolean-like algebra is a Boolean-like ring under some binary operations.

Theorem 2.6: Let (A, ∨,0,1) be a Boolean-like algebra. Define binary operations +, ∨ by a + b = (a ∨ b) = (a ∨ b) = a + b for all a,b,c ∈ A. Then (A, +,0) is a Boolean-like ring.

Proof: In order to prove that (A, +,0) is a Boolean-like ring, we have to prove that
1) (A,+ is an abelian group with identity 0
2) (A,·) is a commutative semi group with identity 1.
3) Distributive law a(b + c) = ab + ac for all a,b,c ∈ A
4) a + a = 0 for all a ∈ A,
5) a(1+a) (1+b) = 0 for all a, b ∈ A
Now, $a+b = (a\land b)\lor (a\lor b) = (b\land a) = b + a$
Therefore $+\lor$ is commutative.

$(a + b) + c = (a + c) + b$

From (A) and (B), $(a + b) + c = a + (b + c)$. Further $a + 0 = (a\land 0) = (a\lor 0) = a = a\land 1 = a$.
Therefore 0 is the additive identity in A.
Also $a + a = (a\land a) + (a\lor a) = 0$.

Thus inverse of a is itself.

Therefore, $(+,\land)$ is an abelian group with identity 0. Further $a(b\land c) = a(b\land c) = (ab\land c) = (a\land b)\land c$ if $a \neq b$ and $a = b$.

Thus $a(b\land c) = a\land (b\land c) = (a\land b)\land c$. Therefore (A,\land,\lor) is a Boolean algebra.

Theorem 2.7: Let $(A,\land,\lor,0,1)$ be a Boolean algebra.

Define the binary operations A and V and complementation \overline{a} by $aVb = a + b + ab$ and $a = a\land 1$ for all $a, b \in A$.

Thus the algebraic system $(A,A,V,1,0)$ is a Boolean algebra.

Proof: In order to prove that A is a Boolean algebra, we need to verify the following.

1. V and A are associative and commutative.

 Now $aV b = a + b + ab = a + b + b = aV b$, and $A a + a = a = a\land b = b + a$.

2. Also, $aV(b\land c) = a + (b + c + bc) + a(b + c + bc) = a + b + c + ab + ac + bc$.

Further, $(A,A\land V) = (ab) = (bc) = (c = (a\land b)\land c) = (a\land b)\land c$.

Therefore V and A are associative and commutative.

3. $(A\land b)\land c = (a\land (b + c)) = (a + b + ac) = (a + b + ac)$.

4. $(A\land b)\land c = (a\land b)\land c$.

5. $a = a\land 0 = a\land 0$ and $A a = a\land 1 = a\land 1 = a$.

6. $(A\land b)\land c = (a\land b)\land c$.

7. $a = a\land 1 = a\land 1 = a$.

Let $b = c$.

Then $a\land (b\land c) = (a\land b\land c) = ab + ac + abc$.

8. $(A\land b)\land c = (a\land b)\land c$.

9. $a = a\land 1 = a\land 1 = a$.

10. $(A\land b)\land c = (a\land b)\land c$.

11. $a = a\land 0 = a\land 0$ and $A a = a\land 1 = a\land 1 = a$.

Therefore $A = A$ and $V = V$.

This completes the proof.

Thus, the newly obtained Boolean algebra is same as the originally given Boolean algebra.

Acknowledgement

The author extends her gratitude to Prof. Y. V. Reddy, Redd. Prof., Department of Mathematics, ANU and also the management of Koneru Lakshmaiah Educational Foundation, Vaddeswaram.

References:

