R*-I-Lc-Continuous Functions in an Ideal Space

A. Josephine christilda 1*, R. Manoharan 2

1 Research Scholar, Sathyabama Institute Of Science And Technology, Chennai, India.
2 Department of Mathematics, Sathyabama Institute Of Science And Technology, Chennai, India.
*Corresponding author E-mail: jchristilda@yahoo.com

Abstract

Some new sets like of “R*-LC-sets”, “R*-I-LC-sets” are introduced using R*-topology. Also defined the notions of “R*-I-LC-continuous maps”, “R*-I*-continuous maps”, “g-R*-continuous map’s and represent “*-continuous function” as decomposition two newly defined functions.

Keywords: R*-LC-sets; R*-I-LC-sets; I*-closed sets; R*-sets; I*-R*-sets; g-R*-sets;

1. Introduction

The triplet (X, τ, I) usually represents an ideal topological space (ITS) where X≠∅ is a set having a topology τ on X and an ideal I ⊆ X which satisfies (i) p(A) ∈ I whenever A ∈ I and (ii) Union of two members of I is also a member of I. For all A of X, A′ (I) of A is the set of all elements of X having the property that O ∩ A ∈ I for each of its neighborhoods O corresponds to the ideal I and the topology τ. We write just A′ in the place of A′ (I) if we are clear about I. From [12], cl′(A) = A ∪ A′, which generates the topology τ (I) which is finer than τ. Manoharan et al [10] studied that if A′A ∈ I for any set A of an ITS then A is called as R*-perfect set. An R* -open set is a member of an R*-topology, which is formed by the collection of R*-perfect sets as basis. Complement of an R*-open set is known as an R*-closed set. For a topological space we use TS and for Ideal topological space we use ITS. In the place of (X,τ), we use τ(X) and for (X,τ, I) we use τ(X,I).

Definition 1.1
Let τ(X) be a TS and S ⊆ X then S is called
(1) Locally closed (or LC) if S is intersection of a member of τ and a closed set [3].
(2) t-set if int(S) = int(cl′(S)) [11].

Definition 1.2
Let τ(X,I) be an ITS and S ⊆ X then
(1) S is a “t-I-set” if int(S) = int(cl′(S)), [4]
(2) S is a “a′-I-set” if int(cl′(int(S))) = int(S), [4]
(3) S is a “I-LC set” if S=∀∩Q, where Pєτ and Q is *-perfect, [2]
(4) S is a “Weakly I-LC set” if S is intersection of a open set and *-closed set.[8].

Definition 1.3
[7] A *-continuous function f is defined as a function from an ITS to a TS namely (Y,σ) such that f⁻¹(S) is *-closed in τ(X), where S is closed in (Y,σ).

2. New Results

In this section, we introduce and study about “R*-LC-sets”, “R*-I-LC-sets”, “R* -I*-LC-sets”, “I*-closed sets” and “I*-R*- LC-sets” and the relation between these sets.

Definition 2.1
Consider an ITS τ(X,I) and S ⊆ X then
(1) R*-LC-set if S is the intersection of a member of R*-topology and a closed set.
(2) R*-I-set if S is the intersection of a member of R*-topology and a t-set.
(3) R*-C-set if S is the intersection of a member of R*-topology and a a′-I-set.

The set all R*-LC(R*-sets, R*-C-sets) sets are given by R*-LC(X)(R*(X), R*-C(X)).

Definition 2.2
An R*-LC-continuous function(respectively R*-continuous) f is defined as a function from an ITS τ(X,I) to a TS (Y,σ) such that f⁻¹(S) is R*-LC-set (respectively R]-I*-set) in τ(X,I) for any σ*-closed set S in Y.

Definition 2.3
Consider a subset S of an ITS τ(X,I). The set S is called an “R*I*-LC-set” if
(i) B=∀∩D, with C is a member of R*-topology and D is a *-closed set.”R*I*-LC(X)” will denote all the “R*I*-LC-sets”;
(ii) I*-closed if S ⊆ U whenever S ⊆ U and U is R*-open in X.
(iii) I*-R*-set if S is the intersection of R*-open set and t-I*-set. Set of all I*-R*-sets of X are denoted by I*-R*(X).

Proposition 2.4
Let τ(X) be an ITS and S⊆X. Then,
(1) Whenever S is a member of R* -topology , then S ∈ R*I*-LC(X);
(2) If \(S \) is “\(*\)-closed”, then \(S \in \{R^*JLC(X)\} \).
(3) If \(S \) is “weakly-\(JLC\)-set”, then \(S \in \{R^*JLC(X)\} \).
(4) Also if \(S \in \{R^*JLC(X)\} \).

Proof

(i) For given “\(*\)-closed set” \(T \), \(\forall T \in \{R^*JLC(X)\} \).
(ii) For any \(R^*\)-open set \(T \), \(\forall T \in \{R^*JLC(X)\} \).
(iii) For any \(R^*\)-ideal set \(T \), \(\forall T \in \{R^*JLC(X)\} \).

3. Conclusion

(1) Continuous functions have significant role in pure and applied mathematics. In this paper we introduced and studied about some new set like \(R^*JLC \)-sets, \(R^*JLC \)-sets, \(I^*g \)-closed set, \(R^*\)-sets, \(I^*\)-\(R^*\)-sets in ideal topological spaces. Also using this sets we obtain a decomposition of continuity. Further that can be extended to soft ideal topological spaces.

References