On R#-Closed and R#-Open Maps in Topological Spaces

Raghavendra K\(^1\), Basavaraj M. Ittanagi\(^2\)

\(^1\)Department of Mathematics, ACS College of Engineering, Bangalore, Karnataka State, India
\(^2\)Department of Mathematics, Siddaganga Institute of Technology, Tumakuru, Karnataka State, India

*Corresponding author E-mail: raghumsc143@gmail.com

Abstract

Defining and investigating properties of R\(^#\)-closed maps, R\(^#\)-open maps, R\(^#\ Here denotes the function or, and R\(^#\)-open maps in topological spaces. 2010 Mathematics Classification: 54A05, 54A10

Keywords: R\(^#\)-closed maps, R\(^#\)-open maps, R\(^#\)-closed maps and R\(^#\)-open maps

1. Introduction

2. Preliminaries

In the paper M or (M,\(\tau\)) and N or (N,\(\sigma\)) denote topological spaces and separation axioms are not assumed. For A\subseteq M, cl(A), int(A), M-A, represent closure of A, interior of A and complement of A in M respectively. \(CD\) denotes the closed, \(h\) denotes the function or map of the function.

Definition 2.1: \(BC\subseteq M\) is said to be R\(^#\)-C(M) [2] if \(\text{gcd}(B)\subseteq W\) whenever \(B\subseteq W\) and \(W\) is R\(^#\)-O(M).

Definition 2.2: \(h\) is said to be R\(^#\)-continuous [5] if \(h^{-1}(V)\) is R\(^#\)-C(M) for every CD \(V\) of Y.

Definition 2.3: \(h\) is said to be R\(^#\)-Irresolute [1] if \(h^{-1}(V)\) is R\(^#\)-C(M) for every R\(^#\)-subset \(V\) of Y.

Results 2.4: [1]
i. Every CD (respectively r-CD, g-CD, p-CD, \(\tilde{g}\)-CD) set is R\(^#\)-C(M).
ii. Every R\(^#\)-C(M) is \(\text{gcd}(\text{respectively gpr-CD, rwg-CD, gspr-CD, r}\tilde{g}\text{-CD, rg}\tilde{g}\text{-CD})\) set in M.

Results 2.5: [1] Assume \(BC\subseteq M\) then
i. If B is r-o(M) and rg-C(M), then B is R\(^#\)-C(M) in M.
ii. If B is g-o(M) and rg-C(M) then B is R\(^#\)-C(M).
iii. If B is r-o(M) and rwg-C(M) then B is R\(^#\)-C(M).
iv. If B is r-o(M) and gpr-C(M) then B is R\(^#\)-C(M).
v. If B is r-o(M) and r\(\tilde{g}\)-g(C(M) then B is R\(^#\)-C(M).
vi. If B is r-o(M) and \(\beta\tilde{g}\) g\(^#\)-C(M) then B is R\(^#\)-C(M).

Definition 2.6: \(BG\subseteq X\) is said to be T\(^#\)-space [1] if every R\(^#\)-C(M) is CD

Results 2.7: [3]
1. If G and H \(\subseteq M\) then
 i. R\(^#\)-cl(G)=G
 ii. If H is any R\(^#\)-O(X) set contained in G then H=\(\text{R}\tilde{g}\text{-int}(G)\)
2. If N\(\subseteq M\) is R\(^#\)-O(M) then N is a R\(^#\)-nbd of each of its points

3. R\(^#\)-closed maps and R\(^#\)-open maps

Definition 3.1: Assume \(g\) is known as R\(^#\)-C(M) (resp-R\(^#\)-O(M)), if the image of every CD (resp-open) in X is R\(^#\)-C(M) in N.

Theorem 3.2: If g is CD map then it is R\(^#\)-CD map, converse is false.

Proof: Assume g be CD map, \(\forall\subseteq C(M)\). Then g(A)\subseteq C(N), hence \(f(M)\) is R\(^#\)-C(N) set in Y, g is R\(^#\)-C(M).

Example 3.3: Accept M=\{1, 2, 3\}, \(\tau=\{\emptyset, M, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}\), \(\sigma=\{\emptyset, N, \{1\}, \{2\}, \{1, 2\}\}\). Let g be an identical map then g is R\(^#\)-C(N) but not a CD map, G=\{2\} in M is g\(^#\)-C(Y).

Theorem 3.4: If g is g-CD map then it is R\(^#\)-CD map, converse is false.
Assume $M=\mathbb{N} \subseteq [1, 2, 3, 4]$, $\tau=\{\emptyset, M, \{1\}, \{2\}, \{1, 2\}\}$, and $\sigma=\{\emptyset, N, \{1\}, \{2\}, \{1, 2, 3\}\}$, g be map $g(1)=1$, $g(2)=2$, $g(3)=3$, $g(4)=4$. g is R^2-CD but not a g-CD map because closed set $\{4\}$ in M is $\{1, 2, 3\}$ which is not g-$C(N)$.

Theorem 3.6: If g is w-CD map (resp. \hat{g}-CD map, r-CD map) then it is R^2-CD map converse is false.

Proof: The proof is obvious every w-CD set is R^2-CD.

Example 3.7: Assume $M=\mathbb{N} \subseteq [1, 2, 3, 4]$, $\tau=\{\emptyset, M, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$, g be an identical map then it is R^2-CD, not a g-CD map because closed CD $\{1, 2, 3\}$ in M is $\{1, 2, 3\} \notin w$-$C(Y)$.

Theorem 3.8: If g be R^2-CD map then it is rg-CD converse is false.

Proof: Accept g be R^2-CD map and $\text{AEC}(M)$. Then $g(A)$ is R^2-$C(N)$ and hence $g(A)$ is rg-$C(N)$. Hence g is rg-CD.

Example 3.9: In example 3.7 $g(1)=1$, $g(2)=2$, $g(3)=3$, $g(4)=4$, $g(2)=2$ is rg-CD but not a R^2-CD map, $G=\{4\}$, $g(1)=1 \notin R^2$-$C(N)$.

Theorem 3.10: Each R^2-CD map is g-spr-CD (resp. g-pr, rg, rgf, r^g, r^g_w, $wgpr$-closed) converses is false.

Proof: The proof is obvious every R^2-CD map is g-spr-$C(M)$.

Example 3.11: In example 3.7, $g(1)=1$, $g(2)=2$, $g(3)=3$, $g(4)=4$ is g-spr-CD but not a R^2-CD map as $g(1)=1 \notin \{1, 2\}$ in $Y \notin R^2$-$C(N)$.

Remark 3.12: R^2-CD map is independent with some existing CD maps in topological spaces as below.

Example 3.13: In example 3.11. Assume f be a map defined by $g(1)=1$, $g(2)=2$, $g(3)=3$, $g(4)=4$ is R^2-CD map but not a rg-CD map.

Example 3.14: Assume $M=\mathbb{N} \subseteq [1, 2, 3, 4]$, $\tau=\{\emptyset, M, \{1\}, \{2\}, \{1, 2\}\}$, g be a map defined by $g(1)=1$, $g(2)=2$, $g(3)=3$, $g(4)=4$ is pre. Semi, sp, b, swg, $g\alpha$, sgb, $rg\alpha$, $b, gw\alpha$, α, $rgb\alpha$, α, $sgb\alpha$, $rg\alpha$, α, $sgb\alpha$, $rg\alpha$, α, $sgb\alpha$ and $\#rg$-CD set in M but not R^2-$C(N)$.

Remark 3.15: From the discussion and facts, the relation between R^2-CD map and some existing CD maps in topological space is shown as follows.

Theorem 3.16: If g is contra r-CD and rω-CD map then g is R^2-CD map.

Proof: Accept $V \subseteq C(X)$. Then $g(A)$ is r-O(N) and rω-$C(N)$. By results 2.5, $f(A)$ is R^2-$C(N)$. Therefore f is R^2-CD map.

Theorem 3.17: If g is contra r-CD and r-wg-CD map then g is R^2-CD map.

Proof: Accept $V \subseteq C(M)$. Then $g(A)$ is r-O(N) and rω-$C(N)$. By results 2.5, $g(A)$ is R^2-$C(N)$. Therefore f is R^2-CD map.

Theorem 3.18: If g is contra r-CD and g-pr-CD map then g is R^2-CD map.

Remark 3.25: The composition of two R^2-CD maps need not be R^2-CD.

Example 3.26: Assume $M=\mathbb{N} \subseteq [1, 2, 3, 4]$, $\tau=\{\emptyset, M, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$ and $\eta=\{\emptyset, Z, \{1\}, \{2\}, \{1, 2, 3\}\}$. The identical map of f and g are R^2-CD maps. g be another map defined by $g(1)=1$, $g(2)=2$, $g(3)=3$, $g(4)=4$. Then the composition g-$C(X)$-Z is not a R^2-CD map as the image of the closed set $\{s\}$ in M is $\{s\}$ which is not a R^2-CD set in Z_n. That is $g(1)=3=g(3)=1, 2, 3$.

Theorem 3.27: If g is CD map and h is R^2-CD map then the composition gh is R^2-CD map.
Proof: Accept F-$C(M)$. Since g is CD then $g(F)$-$C(N)$. As g is R^2-CD map then $g(f(F))$ is R^2-$C(Z)$, therefore gof is R^2-CD map.

Remark 3.28: If g is R^2-CD map and h is CD map then the composition homog: $M \rightarrow Z$ need not be a R^2-CD map.

Example 3.29: Assume $M=\mathbb{N}=\{1, 2, 3, 4\}$, $\tau=\{\emptyset, N, \{1, 2\}, \{1, 3\}\}$, $\sigma=\{\emptyset, Z, \{1\}\}$ and $\eta=\{\emptyset, Z, \{1, 2\}\}$. Let a map f defined as $f(1)=4, f(2)=2, f(3)=4, f(4)=2$ and g as $g(1)=1, g(2)=1, g(3)=4, g(4)=1$. Then f and g are R^2-CD maps and their composition gof is not a R^2-CD map as the image of the CD set $\{3, 4\} \in X$ is $\{1, 2\} \in R^2$-$C(Z)$ That is $(gof)(4)=g(f(4))=g(1, 2, 3)\neq\{1, 2\}$.

Theorem 3.30: Assume g and h are R^2-CD maps and N is T^*_g space then hog is R^2-CD map. If N is $T\omega$ space, then hog is R^2-CD map.

Proof: Let $H\in\mathcal{C}(M)$. Since g is R^2-CD then $g(H)$ is R^2-$C(N)$. Since Y is T^*_g space $h(h)$ is CD. Since g is R^2-C, $h(g(H))$ is R^2-$C(Z)$. Therefore gof is R^2-CD map.

Theorem 3.31: If f is g-CD map, g is R^2-CD map and N is $T\omega$ space then $frog$ is R^2-closed map.

Proof: Let $H\in\mathcal{C}(M)$. As f is g-CD then $f(H)$ is g-$C(N)$. By hypothesis, $f\in\mathcal{C}(M)$. Given g is R^2-CD, then $g(f(A))$ is R^2-$C(Z)$. Therefore gof is R^2-CD map.

Definition 3.32: h is known as R^2-open map if $g(A)$ is R^2-$O(Y) \forall O(M)$.

By the known facts we have

Theorem 3.33:

1. Each open set (respectively r,g,w, g-open) sets in M is R^2-open map, converse is false.
2. Each R^2-O map is rg (respectively gpr,rgw, gspr,r*g,rgβ-open) converse is not prove.

Theorem 3.34: For every bijection map g, the following results are identical

1. $g^{-1}: Y\rightarrow X$ is R^2-continuous
2. g is R^2-O map
3. g is R^2-CD map

Theorem 3.35: Assume a map g is R^2-O then $g(int(H)) \subseteq R^2$-$O(int(g(U))) \forall A \subseteq X$.

Proof: For a open map g, let $H\subseteq M$ and $int(H)$ be $O(M)$. Then $g(int(H))$ is R^2-$O(N)$. We know that $g(int(H)) \subseteq g(H)$. By results 2.7, $g(int(H)) \subseteq R^2$-$O(int(g(H))$space. For the R^2-closed set $\{q\}$ with $\eta \{q\}$, \exists no disjoint open sets $U, V \subseteq \{q\} \subseteq U$ and $r \in V$.

Theorem 3.36: If a map g is R^2-O map then for each neighbourhood U of n in M, \exists a R^2-nbd W of $f(x)$ in N such that $W \subseteq f(U)$.

Proof: Given a R^2-open map g. Let $x\in M$ and U be a nbd of x in M. By the definition of R^2-nbd $\exists R^2$-$O(G(M)$ such that $x \subseteq G(U)$. Consider $g(x) \subseteq g(U) \subseteq g(U)$. Since g is R^2-O, then $g(G)$ is R^2-$O(N)$. By results 2.7, $F(G)$ is R^2-nbd of each of its points. Take $g(G)=W$, W is R^2-nbd of $g(x)$ in N such that $W \subseteq f(U)$.

4. R^2^g-closed maps and R^2^g-open maps

Definition 4.1: A map g is said to be a R^2^g-closed map if the image $g(A)$ is R^2^g-$C(N) \forall R^2^g$-$C(A)$ in M.

Theorem 4.2: Every R^2^g-closed map is a R^2-CD converse is false.

Proof: The proof follows is obvious that every CD set is R^2-CD.

Example 4.3: Assume $M=\mathbb{N}=\{1, 2, 3, 4\}, r=\{\emptyset, N, \{1, 2\}, \{1, 3\}\}$ and $\eta=\{\emptyset, Z, \{1\}\}$. Let f be a map, $f(1)=4, f(2)=2, f(3)=2, f(4)=4$ is R^2-CD map but not a R^2^g-CD map as the image of the R^2^g-$C\{1, 2\}$ in M is $\{3\}$ which is not a R^2^g-$C(N)$.

Theorem 4.4: If the maps g and h are R^2^g-C maps then the composition homog: $M \rightarrow Z$ is R^2^g-C.

Proof: Accept F by any R^2^g-$C(M)$. Since g is R^2^g-C then $g(F)$ is R^2^g-$C(N)$. Since h is R^2^g-C then $h(g(F))$ is R^2^g-$C(Z)$. Therefore hog is R^2^g-C map.

Definition 4.5: A map g is known as R^2^g-open map if $g(H)$ is R^2^g-$O(N) \forall R^2^g$-$O(H(M)$.

Theorem 4.6: Each R^2-O map is R^2^g-O map converses is false.

Proof: The proof is obvious.

Example 4.7: Assume $M=\mathbb{N}=[1, 2, 3], r=\{\emptyset, N, \{1\}, \{1, 2\}\}$ and $\eta=\{\emptyset, Z, \{1\}\}$. Let f be a map defined by $f(1)=3, f(2)=1, f(3)=2$ is a R^2-O map but not a R^2^g-O map as the image of the R^2-O set $\{1, 2\}$ in M is $\{2, 3\}$ in N which is not a R^2^g-$O(N)$.

Theorem 4.8: Assume the maps g and h are R^2^g-O map then their composition homogg is also R^2^g-$open$.

Proof: The proof is as theorem 4.6.

5. Conclusion

In this paper we defined and studied R^2-closed maps, R^2-open maps, R^2^g-closed maps and R^2^g-open maps.

References

