Novel Microstrip Band Pass Filter for C- Band Wireless Applications

Dr. S. Sreenath Kashyap 1*, Kantipudi MVV Prasad 2, Dr. Vipul M Dabhi 3

1Associate Professor Department of Electronics and communication, Kommuri Pratap Reddy Institute of Technology, Hyderabad.
2Assistant Professor, R.K. University, Rajkot, Gujarat
3Professor, Kommuri Pratap Reddy Institute of Technology, Hyderabad
*Corresponding author E-mail: sreenathkashyaps@gmail.com, prasadkmvv@gmail.com

Abstract

In this paper, a novel approach for designing the parallel coupled microstrip bandpass filter operating at C-band frequency is numerically analyzed iteratively and simulated. The physical dimensions are being finalized using standard odd- even impedance method. Various electrical parameters such as insertion loss, reflection loss are being analyzed and practical results are being compared and found same as the predicted results. The proposed design is fabricated on FR4 dielectric substrate and the experimental result shows the scientifically acceptable for C-band Applications.

Keywords: Microstrip line filters, C-band applications, Insertion loss, Reflection loss, Odd- Even Impedance method.

1. Introduction

In this era of science and technology the recent advancements in wireless communication systems require compact structures with enhanced performance parameters to ensure mobility and high efficiency characteristics [1, 2]. Due to the technological innovations in the design and development of communication systems various researchers and aspirants started reconsidering the designs of the filters by considering various shapes, materials, size which has influenced the reformulation of various electrical and mechanical characteristics[3]. The development and progress has attracted more interest in the researchers. The challenge in this design of filters is mainly lies with the size and design modeling which influences the electrical behavior of the entire communication system[4,5]. Several techniques are being proposed in order to analyze the electrical performance parameters of the micro strip filters[6]. The progress in designing the microstrip line filters has attracted more and more interest of the researchers. In this letter, a novel approach for the design procedure of the microstrip line filter which comprises of analysis of attenuation characteristics, prototype values, odd even impedance method, separation of coupled lines is proposed[7,8]. Using this method the electrical performance parameters of the proposed filter structure are drastically enhanced[9,10]. The proposed filter design and performances are analysed and optimized using Computer Simulation Technology (CST microwave studio). The proposed structures are fabricated using FR4 Substrate with a thickness of 1.6mm and dielectric permittivity of 4.4.

2. Filter Design

The geometry of the proposed structures is shown in figure 1. The filter structure is designed on a FR-4 dielectric substrate with permittivity 4.4 and thickness of 1.6 mm.

<table>
<thead>
<tr>
<th>Element Number</th>
<th>Odd Impedance Zod(Ω)</th>
<th>Even Impedance Zoe(Ω)</th>
<th>Width W (mm)</th>
<th>Length L (mm)</th>
<th>Space S (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101.5</td>
<td>38.5</td>
<td>1.4</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>39</td>
<td>2.4</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>39</td>
<td>2.4</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>101.5</td>
<td>38.5</td>
<td>1.4</td>
<td>6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

The table 1 specifies the dimensions of the filter namely length, width and spacing, odd impedance and even impedance values. The dimensions of the calculated values are rounded off to the nearest decimal value in order to avoid the errors in fabrication.
3. Simulation of the Parallel Coupled Band Pass Filter

The mechanical parameters of the filter are calculated and enlisted in table 1. The filter is designed and simulated in CST. The parameters such as insertion loss and reflection loss are analyzed in the simulation results obtained in CST software.

![Simulation results of the Microstrip Parallel Coupled Filter](image1)

Fig. 2: Simulation results of the Microstrip Parallel Coupled Filter

The figure 2 shows the simulation results of the designed filter. The performance parameters of the filter are indicated by the markings for clear understanding and analysis. The marking 1 indicates lower cut off frequency, 2 indicates the upper cut off frequency, 3 indicates the reflection coefficient, 4 & 5 indicates the reflection loss respectively. It is observed that the reflection coefficient is about -30dB at 5 GHz frequency whereas the reflection loss at 7 GHz is -40dB and at 6 GHz is -25dB. The return loss at all these three frequencies is below -10dB whereas the transmission loss is greater than -10dB for the designed filter. Standing waves will be generated due to the mismatch in the impedance.

4. Fabrication, Test and Measurement of the Microstrip Filter at 6 GHz.

The designed filter in CST is fabricated on the FR4 substrate by considering the dimensions as enlisted in table 1. The figure 3 shows the fabricated filter structure on FR4 substrate. SMA connectors are connected on the either sides of the filter in order to connect to the scalar network analyzer. The physical dimension of the fabricated structure is 32 mm x 22.8 mm.

![Fabricated Microstrip Parallel Coupled Filter on FR4 substrate](image2)

Fig3: Fabricated Microstrip Parallel Coupled Filter on FR4 substrate

The setup of the test and measurement, measured results are shown in above figures 4, 5 & 6. The notations in the scalar network analyzer is A- used for measuring the scattering parameter, B- used for the generation of sweep frequency, C- used for the device which is under the test in our case it will be the fabricated microstrip line filter. The simulation result shows the reflection loss of about -35 dB and transmission loss of about -10dB at frequency 6 GHz. The response of the fabricated filter is being determined by the scalar network analyzer. The electrical performance parameters \(S_{11} \) is as shown in the figure 4 in which the X-axis indicates the operating frequency 6 GHz and the value of the magnitude is -36 dB. The figure 6 indicates the transmission loss \(S_{12} \) of the fabricated microstrip filter at 6 GHz. The value of the \(S_{12} \) is about -7 dB. Therefore, the test and measurement results when compared with the simulation and analysis results are found deviating in an acceptable range of less than 10% which is valid for microwave communication applications.
Table 2: Comparison table of the electrical performance parameters the simulated and fabricated models

<table>
<thead>
<tr>
<th>Model</th>
<th>Resonant Frequency</th>
<th>Reflection Loss (S_{11}) in dB</th>
<th>Transmission Loss (S_{12}) in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microstrip Parallel coupled line filter</td>
<td>6 GHz</td>
<td>-30</td>
<td>-10</td>
</tr>
</tbody>
</table>

5. Conclusion

In this paper, we present a novel approach for the design of the microstrip line filter which consists of the parallel coupled lines and operates at 6 GHz frequency. The performance parameters of the filter structure are compared by considering the simulation and test and measured results. It is found that the reflection loss is and the transmission loss is for the designed microstrip line filter at 6 GHz operating frequency. The simulated and measured results show that the filter model can be used for multi-frequency and wireless communication applications.

Acknowledgement

The authors sincerely thank to Kommuri Pratap Reddy Institute of Technology, Hyderabad & RK University, Rajkot for encouraging and supporting the research work.

References