Rail Transport Infrastructure on the Example of Level Crossing System

Perzyński Tomasz¹*, Wojciechowski Jerzy², Łukasik Zbigniew³

¹,²,³ Kazimierz Pulaski University of Technology and Humanities in Radom
*Corresponding author E-mail: t.perzynski@uthrad.pl

Abstract

The paper presents an analysis of the system of automatic level crossing. The proposed system belongs to a group of linear devices that ensure safe movement of motor vehicles at intersections of railway and car roads. In the paper, the computational tasks were carried out. On the basis of statistical data, the THR rate, which is characteristic for rail transport, was estimated. An example of modeling railway automation systems based on Markov processes is also presented.

Keywords: level crossing system, models, safety, THR.

1. Introduction

Railway transport is one of the elements of the Polish transport system. In order to carry out transport tasks it is necessary to maintain the availability of rail infrastructure at a high level. This can be achieved through the diagnostics of devices responsible for controlling and managing the transport process and modernizing already existing systems. One of the elements of the railway infrastructure modernization is the need to maintain a high level of safety. It should be remembered, that the application of new solutions, including computer-aided ones, must meet the requirements of the safety stipulated in the standards. In the recent years, the Polish railways have tended to increase the number of installed computer-controlled railway traffic control systems, in particular in control districts. According to the data for 2016 [1], over 30% of the systems at railway and roads junctions were modern systems equipped with self-diagnosis and event registration systems. The accession of Poland to the EU in 2004 resulted in obligatory application of standards related to the design, testing, implementation and maintenance of safe railway automation systems. One of the basic normative documents regarding system safety is the PN-EN 50126-2 standard. This standard describes, in particular, safety-related generic aspects of the RAMS (Reliability, Availability, Maintainability and Safety), life-cycle and methods to derive the safety requirements for systems and subsystems, [2]. The solutions applied in Poland in relation to the data transmission medium are based mainly on the solutions of wired data transmission. PN-EN 50159-2 standard (Railway applications – Communication, signalling and processing systems – Safety-related communication in transmission systems) allows the use of wireless transmission, [3]. The article presents an example of a modern system of automatic crossing signaling, RASP-4F. Analytical tasks were also fulfilled based on the proposed mathematical model. On the basis of the statistical data, the safety parameters of the system of automatic crossing signaling have been determined. Based on the operation data, the χ² test allowed not to reject the hypothesis, that the times of failures for the group of level crossing systems are related to the exponential distribution.

2. Safety in the Railway Automation Systems

Each contemporary system of railway traffic management and control must have documentation allowing the system to be operated on the railway line. Currently, the basic indicator necessary to assess railway automation systems is the acceptable level of risk - THR (Tolerable Hazard Rate), determined as, [8]:

\[THR = \prod_{i=1}^{n} \frac{\lambda_i}{t_{d_i}} \times \sum_{i=1}^{n} t_{d_i}^{-1} \] \hspace{1cm} (1)

where: \(\lambda_i \) – failure rate, \(t_{d_i}^{-1} \) – safe down rate.

The recommended value of THR related to safety level SIL-4 is presented on Table 1.

<table>
<thead>
<tr>
<th>THR</th>
<th>SIL (Safety Integrity Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-8} \leq THR < 10^{-8})</td>
<td>4</td>
</tr>
<tr>
<td>(10^{-5} \leq THR < 10^{-7})</td>
<td>3</td>
</tr>
<tr>
<td>(10^{-7} \leq THR < 10^{-6})</td>
<td>2</td>
</tr>
<tr>
<td>(10^{-8} \leq THR < 10^{-5})</td>
<td>1</td>
</tr>
</tbody>
</table>

For the ”2z2” system, the formula (1) takes the form:

\[THR = \frac{\lambda_a}{t_{d_a}} \times \frac{\lambda_B}{t_{d_B}} \times \left(t_{d_a}^{-1} + t_{d_B}^{-1} \right) \] \hspace{1cm} (2)

Table 1: Value of THR, [10]
With respect to formula (1), the system safety depends not only on the intensity of failure, but also on the detection time of single and double damages.

3. Linear Systems – Automatic Level Crossing System

Rail linear systems are responsible for the implementation of train routes between railway posts. This group of devices includes line blocking systems (automatic blocking and semi-automatic blocking) or remote control devices. An example of a linear system is also automatic level crossing system, which is used to secure traffic on rail-road crossings, [4]. An example of the installed RASP-4F system is shown in Figure 1.

![Fig. 1: RASP-4F system installed on railway line number 8, Poland (own study)](image1)

The main container contains two PLCs, an operator terminal and an input / output card unit. The two independent CPLs controllers exchange data and work synchronously via the Ethernet bus. The operation of the system is supervised by the remote control device, which is the master controller. The RASP-4F system can cooperate with various stationary traffic management and control systems. The system can be used on single and multi-track railway lines, where the maximum train speed does not exceed 160 km / h, [9].

4. System modeling

One of the ways of obtaining information on system safety parameters is mathematical modeling. Fig. 4 presents a mathematical model including radio transmission in the system of automatic level crossing, [7].

![Fig. 4: Model with radio transmissions (own study)](image2)
transmission channels. In this state, the devices are replaced. For the model in Figure 4, we can write the following state equations:

\[
\begin{align*}
\frac{dp_1}{dt} &= -4\lambda P_1(t) + \mu_1 P_1(t) + \mu_2 P_2(t) \\
\frac{dp_2}{dt} &= 2\lambda P_1(t) - \lambda P_2(t) - \mu_1 P_1(t) \\
\frac{dp_3}{dt} &= 2\lambda P_1(t) - \lambda P_3(t) - \mu_1 P_1(t) \\
\frac{dp_4}{dt} &= \lambda P_1(t) + \lambda P_3(t) - \mu_1 P_1(t)
\end{align*}
\] (3)

Parameters \(\lambda \) and \(\mu \) describe respectively:
- \(\lambda \) - intensity of damages to the radio modem (including suspension, stopping the system),
- \(\mu \) - return to full efficiency (e.g. reset of a radio modem).

For the analysis, a reliability parameter was proposed in the form of the availability expressed by the formula, [3]:

\[A = \lim_{t \to \infty} \sum P_i(t) \] (4)

where \(i \) is associated with the states of correct work.

Assuming parameters \(\lambda \) and \(\mu \):
- \(\lambda = 1.2E-06 \text{ h}^{-1} \),
- \(\mu_1 = 1 \text{ h} \) - which corresponds to the length of the device reset time after stopping (~ 1 min.),
- \(\mu_2 = 1 \text{ h} \) - which corresponds to time of repair, and

using the Mathematica application, Fig. 5.

Fig. 5: Calculations in the Mathematica software (own study)

calculated values the availability \(A(t) \) with reference to time of modern repair/change (failure of two channels) are presented in the Table 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Time of repair / change</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 min</td>
<td>0.898</td>
</tr>
<tr>
<td>2</td>
<td>30 min</td>
<td>0.9698</td>
</tr>
<tr>
<td>3</td>
<td>1 h</td>
<td>0.94618</td>
</tr>
<tr>
<td>4</td>
<td>5 h</td>
<td>0.85542</td>
</tr>
<tr>
<td>5</td>
<td>10 h</td>
<td>0.81679</td>
</tr>
<tr>
<td>6</td>
<td>20 h</td>
<td>0.78854</td>
</tr>
</tbody>
</table>

Table 2: The value of availability in a function of reset time

5. Verification Based on Statistical Data

\(\chi^2 \) test was used in order to carry out the analysis of RASP-4F system. The calculations are based on statistical data and are shown in tables 3 and 4 [8].

<table>
<thead>
<tr>
<th>No.</th>
<th>(\text{l}_{16})</th>
<th>(t_{95})</th>
<th>(n_i)</th>
<th>(F(t_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4500</td>
<td>5</td>
<td>4500</td>
<td>0.486582881</td>
</tr>
<tr>
<td>2</td>
<td>18000</td>
<td>5</td>
<td>18000</td>
<td>0.736402862</td>
</tr>
<tr>
<td>3</td>
<td>27000</td>
<td>5</td>
<td>27000</td>
<td>0.864654717</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Table 3: Calculations for the system

<table>
<thead>
<tr>
<th>No.</th>
<th>(p_i)</th>
<th>(n_i)</th>
<th>(f_i)</th>
<th>((n_i-f_i)^2/n_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.48658288</td>
<td>7.78532609</td>
<td>0.00360505</td>
<td>0.99649538</td>
</tr>
<tr>
<td>2</td>
<td>0.24981998</td>
<td>3.99711969</td>
<td>0.01152952</td>
<td>1.00360505</td>
</tr>
<tr>
<td>3</td>
<td>0.26359714</td>
<td>4.21755421</td>
<td>0.061222142</td>
<td>0.14516029</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td>0.07708482</td>
<td>2.14526072</td>
</tr>
</tbody>
</table>

Probabilities of \(p_i \) were calculated according to:

\[p_i = F(t_i) \]
\[p_i = F(t_i) \]

Due to the fact that:

\[\sum_{i=1}^{n} p_i = 1 \]

the values of cumulative distribution in individual ranges were calculated on the basis of the formula:

\[F(t) = 1 - \exp(-\lambda t) \]

Intensity of failure in the exponential distribution parameter was calculated based on the formula:

\[\lambda = \frac{n}{\sum n_i t_{fi}} \]

The distribution quantile for the limit significance level based on the distribution tables is:

\[\chi^2_{95,5} = \chi^2_{5} = 3.841 \]

Since:

\[\chi^2_{95,5} = 2.145 < \chi^2_{5} = 3.841 \]

therefore, there is no reason to reject the hypothesis, that the failure times for the analyzed group of systems are related to the exponential distribution. Assuming a reaction time \(t_{thr} = t_{sp} = 1 \text{s} \), based on formula (2), the value of the calculated THR index is:

\[\text{THR} = 3.047E-12 \]

(value for SIL4: 10E-9 ≤ THR ≤ 10E-8)

6. Conclusions

Modern systems of automatic level crossing systems belong to the group of safe devices. Unfortunately, there are collisions at railway crossings, but in most cases, through fault of the drivers of motor vehicles. Accidents on the intersection of road and railway crossing in Poland constitute about 0.8% of the total number of road accidents. The presented analysis proves that the level crossing system described in the paper meet the requirements of standards, including SIL4. This has been achieved due to the use of appropriate hardware solutions, including redundancy at the hard-
ware level. Proposed in the paper the analysis in the form of the Markov process is one of the recommended methods of railway automation systems analysis, [6]. The modeling and analysis of railway automation systems can be a part of another research issue taking into account the influence of electromagnetic interference on rail computer systems reliability [11].

References