Reduction of Energy Consumption in Hotels with Aerothermal Energy. Case Study: Canary Islands (Spain)

Francisco Javier Díaz Pérez¹*, David Chinarro², Mª Rosa Pino Otín³, Ricardo Díaz Martín⁴, and Adib Guardiola Mouhaffel³

¹Universidad San Jorge, Zaragoza, Spain.
²Universidad a Distancia de Madrid (UDIMA), Madrid, Spain.
³Universidad de las Palmas de Gran Canarias, Gran Canarias, Spain
*Corresponding author E-mail: fjdiazp@usj.es

Abstract

This article presents a management model and control of energy efficiency in hotels adapted to the consumption patterns that ensure the comfort requirements of customers and integrated into the environment of an intelligent tourist complex. The analysis of the hot water system (DHW) of two hotels in the Canary Islands (Spain) in relation to their occupation, yields a solution based on renewable energies using high temperature heat pumps with aerothermal dissipation and supported by boilers of existing LPG propane. The control by programmable automaton (PLC) integrated in a system of control and acquisition of data (SCADA) optimizes the systems to maintain the maximum accumulated energy during the periods of cheapest electric tariff, by means of a system of opening and closing of hydraulic Valves that it manages to adjust the demand of DHW consumption to achieve the highest energy accumulation during the hours with the cheapest electricity tariff. The result after two and a half years of activity registration is a faster return on investment due to the optimized energy management of the system, through the control of operating hours adjusted to the needs of customers and the hourly rate. It has also been predicted that during the estimated 12 years of the system will have saved more than € 1,179,737 in a hotel 1 and € 1,315,104 and thermal 9,522,301 kWh in the hotel 2. This model shown can be seen how economically and energetically very efficient.

Keywords: DHW, energy efficiency, hotels, aerothermal energy, SCADA, PLC.

1. Introduction

The constant increase of tourism in Spain is a fact, and this past year 2017 has again increased by 4.4% tourist GDP, now standing at 11.5% of total Spanish GDP [1] and giving work to 13 % of the employed population, which has led the sector to outstanding positions in the Spanish economy and enables both hotel and extra hotel accommodation have begun to remodel their facilities and equipment. Within these initiatives of improvements, and due to the new awareness of customers towards the environment, great efforts have been made in favour of the sustainability of the tourist destination and energy efficiency of the facilities. The hotel companies have worked in recent years, in the implementation of energy saving and efficiency measures in multiple facilities, betting on the reduction of consumption and greenhouse gas emissions (GHG), through the implementation of energy management methods and of information and communication technologies in monitoring and control systems. This new “green revolution” of the tourism business is well encouraged by the European Union (EU), defining goals in reducing CO2 emissions to 20% by the year 2020 compared to the 1990s and establishing that 20% of the Total energy consumption is supplied by renewable energies (EERR) [2]. In addition, new objectives have already been established for future stages [3], setting a reduction of 40% in emissions by 2012, compared to 1,990, 27% of EER, increase in energy efficiency by 27-30% and 15% electric interconnection, that is, that the electricity generated in the EU can be transported to other member states. By the year 2050, the EU has imposed an 80-95% reduction in greenhouse gas emissions compared to 1990 levels. With these guidelines for improvement in energy management and saving, the tourism sector has launched a “green revolution”, based on the implementation of technologies to reduce consumption and the certification of establishments and destinations, which leads to an increase in the different certification systems and certified companies, as can be seen in Table 1, where the main current environmental management and energy management certifications are being applied is the hotel establishments.

Table 1. Main environmental and energy certificates.

<table>
<thead>
<tr>
<th>Name</th>
<th>Certificator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosphere [6]</td>
<td>Biosphere Responsible Tourism</td>
</tr>
<tr>
<td>Earthcheck [7]</td>
<td>Ec3 Global</td>
</tr>
<tr>
<td>Emas [8]</td>
<td>European Comission</td>
</tr>
<tr>
<td>Iso 14001 [10]</td>
<td>International Organization For Standardization (Iso)</td>
</tr>
<tr>
<td>Iso 50001 [11]</td>
<td>Iso</td>
</tr>
<tr>
<td>Travelife [13]</td>
<td>Travelife Ltd</td>
</tr>
<tr>
<td>Step [14]</td>
<td>Sustainable Travel International</td>
</tr>
</tbody>
</table>

The importance of these changes is due to two clear reasons. The first is the need to reduce the energy consumption of the facilities, meeting the expectations of customers without reducing the services offered. The second is due to the change in mentality of...
customers, who begin to value destinations and establishments in response to the environmental sustainability of their facilities and services. Within these tourist destinations, we have taken as example two establishments in the Canary Islands (Spain), where the tourism sector is the main engine of the economy, representing 34.3% of GDP in 2016 and generating 39.7% of GDP. % of employment in the islands [16] and being an important factor in their labour mobility [17]. Tourist stays have increased by 27% from 2010 to 2016 [18] in an archipelago where 63% of its territory is declared a biosphere reserve by UNESCO [19]. In this singular tourist area, we focus our attention on the study of the DHW systems of two hotel establishments on the island of Fuerteventura. The reason is that it has been proven in multiple investigations as the sum of the air conditioning and the DHW are the main energy consumers, depending on the percentage of each of the geographical area of study. For example, in Caribbean hotels, 48% of electric power is consumed in air conditioning (AA) [20], in Hong Kong AA accounts for 45% of electricity consumption [21], in hotels in the Balearic Islands the total energy consumption is between 22% for the DHW, the AA 14% and the heating 21% [22], in the hotels in the United States the consumptions are divided in a general way with the air conditioning 31%, the DHW 17% and the rest for other uses [23], in Britain the typical distribution is 47% in heating and 20% in DHW [24], and in Greece the typical distribution is 35% in heating, 15% in AA and 22% in DHW [25]. Considering the consumption of customers per day, which vary according to zones and type of hotel, we can verify the importance of reducing these consumptions on the total energy needed for a hotel, which has been studied by several authors [26, 27, 28, 29, 30].

2. Methodology

The installations analysed belong to two four-star hotels of 333 and 354 rooms, designated as H1 and H2 respectively, as they cannot be named due to the data protection of both companies, where their DHW-based heating systems have been replaced, propane LPG boilers, by systems based on aerothermy technology of high temperature heat pumps. The data that are initially counted are the annual occupation and the total consumption of LPG propane. By means of the studies of previous facilities of hotels of the same category and climatic zone, and of the norms of calculation [31], it has been verified that the average consumption of the clients is of about 70 L/day of DHW, and the percentage of consumption of total LPG propane by the DHW with respect to the remaining consumers -furniture and laundry according to cases- is between 60% and 75% of total consumption [32]. With this starting data and once the possible heating systems were chosen, the possibility of using a system based on aerothermy and biomass was studied, whose forecasts of operating expenses and initial investments can be checked in Table 2, where it was calculated a theoretical coefficient of performance (COP) for heat pumps of 2.4, much lower than the real one. To make forecasts as accurate and real as possible, it is necessary to have the greatest number of exact values and not estimates, for which the energy management of the establishments is fundamental to be able to perform these calculations of energy system improvements.

The chosen result of the alternatives analysed has been aerothermy as a system to be implemented in both hotels, considering the number of companies that know these technologies and that the biomass fuel in the Canary Islands is not yet widespread and its performance is reduced due to transport, as has been demonstrated in several studies [33,34,35]. The solution consists of high temperature heat pumps of 151.2 kW and 201.6 kW in the H1 and H2 hotels respectively, which are supported in a timely manner by the existing boilers and regulated by a PLC-based control system with connection to a computer through a SCADA system. For the calculations of the system so that it complies with the current regulations, the European Commission’s guidelines for estimating values that can consider energy from renewable sources in operation of heat pumps according to dissipation systems have been considered [36] and considering the data on the efficiency of the equipment that regulates the seasonal yield factor (SPF) [37]. For its part, the Institute for Energy Diversification and Saving (IDAE) has a document (it does not replace the standard) and according to this [38], the SPF will be calculated multiplying its nominal benefits (COP) by a factor called representative weighting factor (FP) and by a correction factor (FC) for the different technologies and applications of electrically driven heat pumps.

3. Calculus

Initially we performed the calculations of the total COP of the equipment considering the operating temperature and the environmental dissipation for Fuerteventura and in the tables of the manufacturer the values of electric consumption and thermal generation are obtained. Considering the system used for high temperature heat pumps with dissipation by aerothermy, which are formed by an external LG brand machine, model ARUN 160 LTE4, unit capacity of 50.4 kW, EER 4.30; SEER 7.27; COP 4.42 and 2 internal units of hydrokit brand LG model ARNH 08 GKA32A, with 25.2 kW of heat power, 80°C of maximum water outlet temperature, and in each hotel is formed by 3 or 4 systems to get the 151.2 kW or 201.6 kW thermal.

\[
\text{COP}_{\text{PFC}} = \frac{E_{\text{Thermal}}}{E_{\text{Elect, inside}} + E_{\text{Elect, outside}}}
\]

To determine the SPF of the heat pump we need to know the corresponding FP and FC. The FP will be obtained in the tables of the IDAE [38] 4.1 according to the climatic zone of the hotel site and to the type of heat pump used and the FC in the table of the IDAE 4.2 with a COP calculated for 60°C. Fuerteventura is an area of climatic severity in winter A [39] and the type of heat pump is aerothermal. Centralized equipment, so FP = 0.87. The temperature chosen for the preparation of the ACS is 60 °C, so FC = 1.

\[
\text{SPF} = \text{COP}_{\text{nominal}} 60^\circ C \times \text{FP} \times \text{FC}
\]

Once it has been verified that the SPF of the pump exceeds the minimum of SPF = 2.5, it can be considered that the heat produced by the pump comes from a renewable source of both facilities. Now the amount of renewable energy is calculated, in accordance with the decision of the commission on calculation guidelines [40] is calculated with the following formula:

\[
E_{\text{net}} = Q_{\text{useful}} \times (1 - 1/\text{SPF})
\]

\[
Q_{\text{useful}} = H_{\text{hp}} \times P_{\text{rated}}
\]

Where are you the amount of renewable energy supplied by heat pump technologies, Q_{useful} estimated total useful heat provided by

<table>
<thead>
<tr>
<th>Table 2: Projection of consumption and installation expenses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
</tr>
<tr>
<td>Total Hotel Lpg Expenditure In Kg/Year</td>
</tr>
<tr>
<td>Total Glp Expense In Dhw In Kg/Year</td>
</tr>
<tr>
<td>Thermal Needs Dhw In Kwh/Year</td>
</tr>
<tr>
<td>Lpg Cost €/Year</td>
</tr>
<tr>
<td>Projected</td>
</tr>
<tr>
<td>Necessary Investment</td>
</tr>
<tr>
<td>Consumption Electric In Kwh/Year</td>
</tr>
<tr>
<td>Cost Of Electricity</td>
</tr>
<tr>
<td>Saving Compared Lpg</td>
</tr>
<tr>
<td>Amortization In Years</td>
</tr>
</tbody>
</table>
heat pumps [GWh], H_{p} equivalent hours of full load operation [h] and P_{rated} power of installed heat pumps, considering the duration of the different types of heat pumps [GW].

Values for hotel H1:

\[Q_{useful} = 1170 \times 151.2 \times 10^{-6} = 0.176904 \text{ GWh} \]
\[E_{res_min} = 0.176904 \times (1-1/2.5) = 0.106142 \text{ GWh} \]
\[E_{res} = 0.176904 \times (1-1/2.51) = 0.106424 \text{ GWh} \]
Percentage of renewable energy $= 0.106424 / 0.176904 = 60.16\%$

Values for hotel H2:

\[Q_{useful} = 1170 \times 201.6 \times 10^{-6} = 0.235872 \text{ GWh} \]
\[E_{res_min} = 0.235872 \times (1-1/2.5) = 0.141523 \text{ GWh} \]
\[E_{res} = 0.235872 \times (1-1/2.51) = 0.141899 \text{ GWh} \]
Percentage of renewable energy $= 0.141899 / 0.235872 = 60.16\%$

Fig. 1 shows the operating scheme of the hotel's DHW system, with both hotels being the same. The systems consist of 5 accumulators of 5000 L - three for direct heating by boilers / heat pumps and 2 for preheating by recovering air conditioning (AA) -, the corresponding exchangers and circulation pumps. The primary boiler circuits are 2 boilers 280 kW in the H1 hotel and 2 boilers 290 kW in the H2. The circuits of the heat pumps in the H1 hotel are 3 heat pumps and in the H2 it is formed by 4 heat pumps as well. The principle of operation is as follows: priority to the heat pumps for the heating of the 3 DHW, ACS 3, 4 and 5 accumulators, and in case 45 min did not reach the set temperature (61ºC) they would enter the boilers as a support system, motivated by Legionella control regulations [41]. The AA recovery system preheats the 2 ACS 1 and 2 accumulators. Two motorized valves have been added to this system, which are indicated in the diagram as "night valves", which are activated when the AA system is not operating and in the most economical electricity tariff schedule P6, to accumulate the largest amount of water at the working temperature, for which the operating temperature setpoint of the high temperature heat pumps (2nd set point) is also increased, at 65ºC, in order to accumulate in the 5 existing accumulators the maximum possible energy during the periods of lowest price of the same and in this way, reduce the average price of the useful electric kWh used for the heating of the DHW of the establishments.

In the SCADA you can put the different pump controls, system temperatures, access to the programming of the operating hours and the operating status of the equipment.

4. Results and Discussion

The systems were launched in the hotels in September and December 2015 at the H1 and H2 hotel respectively. The results, after two and a half years of activity, have been very satisfactory, with a return on investment faster than initially projected. Also, be checked as by means of the possibility of adjustments, of times, hours of operation and temperatures can be obtained greater savings with a correct management of the parameters as it is carried out in the hotel H1 with respect to the H2. **Fig. 2** shows the graphs of energy consumption and expenditure per client-day of ACS of the hotels, graphically checking the decrease of these in 2016-2017 due to the new installation of aerothermy. With these new equipment, a drastic reduction of energy consumption in ACS has been achieved, as well as the emissions associated with LPG boilers, with higher savings in the H1 hotel compared to the H2 due to the adjustment of the system by the equipment hotel maintenance.

<table>
<thead>
<tr>
<th>Year</th>
<th>H1 DHW € / pax</th>
<th>H1 DHW kWh / pax</th>
<th>H2 DHW € / pax</th>
<th>H2 DHW kWh / pax</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0.54</td>
<td>3.5</td>
<td>0.62</td>
<td>4.3</td>
</tr>
<tr>
<td>2011</td>
<td>0.45</td>
<td>3.2</td>
<td>0.54</td>
<td>3.9</td>
</tr>
<tr>
<td>2012</td>
<td>0.40</td>
<td>3.0</td>
<td>0.48</td>
<td>3.6</td>
</tr>
<tr>
<td>2013</td>
<td>0.36</td>
<td>2.8</td>
<td>0.44</td>
<td>3.3</td>
</tr>
<tr>
<td>2014</td>
<td>0.33</td>
<td>2.6</td>
<td>0.42</td>
<td>3.1</td>
</tr>
<tr>
<td>2015</td>
<td>0.31</td>
<td>2.4</td>
<td>0.40</td>
<td>2.9</td>
</tr>
<tr>
<td>2016</td>
<td>0.29</td>
<td>2.2</td>
<td>0.38</td>
<td>2.7</td>
</tr>
<tr>
<td>2017</td>
<td>0.27</td>
<td>2.1</td>
<td>0.36</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 3 shows the evolution of energy and economic costs of the establishments, with a result of a reduction in energy consumption to produce the ACS between 72.7% and 63% per hotel respectively. It also shows that the average spending on ACS per client hosted in recent years (2010-2014) compared to the 2016-2017 year has decreased by 79.4% and 70.3%, from an average of € 0.54 / customer night (=pax) and 0.62 € / pax has gone to 0.11 € / pax and 0.19 € / pax for each hotel respectively. We compare the sav-

![Fig. 1. Diagram of operation of the DHW system of the study hotels.](image-url)
nings for the years 2010 to 2014, since 2015 was launched at the end of the year, it is verified that due to the price of the kg of LPG, the amortization of the equipment has taken place in less time than the one that it was estimated, since also the actual consumption has been lower than projected due to PLC control that optimizes the operation by schedules. As a result, the installation has already been amortized in the time it has been running and is currently generating benefits. The total energy saving in annual kWh is greater than 600,000 kWh in both systems. The approxi-
mate consumption of LPG by the support boilers has been consid-
ered 5% of the total gas consumption in the H1 hotel and of 15% in the H2, due to the excessive punctual consumption of DHW in peak hours, mainly during the mornings between 8:00 a.m. to 9:00 a.m. hours and afternoons between 6:00 p.m. to 7:00 p.m., with the support of the boilers being necessary so as not to oversize the installation of heat pumps. The difference in gas consumption is due to the use of more optimized control systems in the H1 hotel than the H2, with a difference of more than 35.5% between the energy consumed per client of one hotel with respect to the other.

Table 3: Values of energy and economic consumption per customer and day obtained.

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/pax</td>
<td>4.54</td>
<td>4.40</td>
<td>4.54</td>
<td>4.30</td>
<td>4.13</td>
<td>3.06</td>
<td>1.20</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>€/pax</td>
<td>0.47</td>
<td>0.54</td>
<td>0.58</td>
<td>0.56</td>
<td>0.57</td>
<td>0.38</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>kWh/pax</td>
<td>4.79</td>
<td>5.41</td>
<td>4.83</td>
<td>4.52</td>
<td>4.60</td>
<td>1.91</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>€/pax</td>
<td>0.56</td>
<td>0.59</td>
<td>0.69</td>
<td>0.64</td>
<td>0.63</td>
<td>0.59</td>
<td>0.19</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

With the data obtained, the following Table 4 of expenses and savings produced by this change in the energy model is generated. Considering that the equipment has an average life of 12 years of the system will have saved more than € 1,179,737 and thermal 8,780,005 kWh in a hotel 1 and € 1,315,104 and thermal 9,522,301 kWh in the hotel 2 for which it is expected to have saved more than € 1,100,000 and in the H1 hotel and more than € 1,300.00 in the H2 hotel.

5. Conclusions

The investment in the reduction of energy consumption is the way forward to maintain current quality and environmental standards, without reducing services to customers and without increasing operating expenses. It has been proven how the amortizations are very fast, and the savings produced can be reinvested in further modernizing other facilities or offering more services to customers. The investment in high efficiency systems and based on heat pumps leave the possibility to get water heating systems with zero emissions if they are made with joint supplies of photovoltaic solar panels, which would achieve autonomous systems without dependence on external energy, its operation. It is in the hands of the owners or operators of the hotel facilities, the mentalizing and making these improvements in their facilities, as well as in the institutions to legislate and inform about these technologies and their application to the current buildings, in search of the long-awaited building of energy almost zero (ZEB) or almost zero (nZEB).

References

Table 4: Expenses to annual savings and forecast during the useful life of the heat pump system

<table>
<thead>
<tr>
<th></th>
<th>TYPE</th>
<th>2.010</th>
<th>2.011</th>
<th>2.012</th>
<th>2.013</th>
<th>2.014</th>
<th>2.015</th>
<th>2.016</th>
<th>2.017</th>
<th>Forecast in 12 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Annual expenditure €</td>
<td>90,841</td>
<td>117,518</td>
<td>123,715</td>
<td>115,877</td>
<td>120,113</td>
<td>82,324</td>
<td>26,109</td>
<td>25,311</td>
<td>308,518</td>
</tr>
<tr>
<td></td>
<td>Annual savings €</td>
<td>99,096</td>
<td>97,527</td>
<td>1,179,737</td>
<td>1,179,737</td>
<td>1,179,737</td>
<td>1,179,737</td>
<td>1,179,737</td>
<td>1,179,737</td>
<td>8,780,005</td>
</tr>
<tr>
<td></td>
<td>Annual savings kWh</td>
<td>738,647</td>
<td>724,687</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>8,780,005</td>
</tr>
<tr>
<td>H2</td>
<td>Annual expenditure</td>
<td>117,148</td>
<td>143,198</td>
<td>167,936</td>
<td>154,324</td>
<td>152,271</td>
<td>142,567</td>
<td>48,434</td>
<td>44,064</td>
<td>554,985</td>
</tr>
<tr>
<td></td>
<td>Annual savings</td>
<td>107,342</td>
<td>111,842</td>
<td>1,315,104</td>
<td>1,315,104</td>
<td>1,315,104</td>
<td>1,315,104</td>
<td>1,315,104</td>
<td>1,315,104</td>
<td>1,315,104</td>
</tr>
<tr>
<td></td>
<td>Annual savings kWh</td>
<td>793,194</td>
<td>793,857</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
<td>9,522,301</td>
</tr>
</tbody>
</table>