A Study on Fuzzy TT-Ideals in Ternary Γ-Semiring

K. Revathi1, 2, D. Madhusudhana Rao3*, P. Sundarayya4 and T. Satish5

1Research Scholar, Department of Mathematics, GITAM University, Vishakhapatnam, A.P. India.
2Asst. Professor, Department of Mathematics, Adikavi Nannaya University, Rajamundry, A.P.
3Associate Professor, Department of Mathematics, VSR & NVR College, Tenali, A.P. India.
4Asst. Professor, Department of Mathematics, GITAM University, Vishakapatnam, A.P. India.
5Asst. Professor, Department of Mathematics, S. R. K. R. Engineering College, Bhimavaram, A.P. India.

*Corresponding Author E-mail: dmrmaths@gmail.com, dmr04080@gmail.com

Abstract

The concepts of fuzzy theory in T-semiring in terms of fuzzy TT-ideals in TT-semirings are introduced and also we made a study on some properties of fuzzy TT-ideals in TT-semiring.

Keywords: TT-Semiring, TT-ideal, fuzzy TT-ideal, TT-subsemiring, regular TT-semiring.

1. Introduction

2. Preliminaries

Note 2.8: For preliminaries refer the references [2], [3].

3. Fuzzy TT-ideals:

Def 3.1: A fuzzy set ξ of a TT-semiring is said to be a fuzzy TT-subsemiring of Q if

(i) ξ(u + v) ≥ min{ξ(u), ξ(v)}

(ii) ξ((au)hv) ≥ min{ξ(a), ξ(v), ξ(w)} ∀ u, v, w ∈ M

Ex: 3.2: Let M be the set of rational numbers and Γ is the set of natural numbers. Define a mapping from M×M×M to M by usual addition and ternary multiplication defined by aabβc = usual product of a, b, c; for a, b, c ∈ M, a, b, c ∈ Γ. Then M is a TT-semiring. Define μ:M → [0, 1] as μ(x) = {1 if x ∈ Q

0, otherwise

Then μ is a fuzzy TT-semiring of M.

Example 3.4: Consider the set Z = {0, 1, -1, 2, -2, …} and Γ be the set of even natural numbers. Then with respect to usual addition Z and multiplication is infinite TT-semiring. Clearly ZZ is a proper Γ-subsemiring of Z. Define μ:Z → [0, 1] by

ξ(x) = \begin{cases} 0.9 & \text{if } x \in 2Z \\ 0.8 & \text{if } x \in 2Z+1 \\ \end{cases}

It is easy to verify that ξ is a fuzzy T Γ-sub semi ring of the TT-semi ring Z.

Def 3.5: A fuzzy T Γ -sub semi ring μ of a TT-semiring M is called improper if μ is constant on the T Γ-semi ring T, otherwise μ is termed as proper.

The 3.6 : Let M be a T-smarandah and F(M) be the set of all non-empty fuzzy subsets of TT-semiring M. If e, f, g, h ∈ F(M), then

(i) e ∩ (f ∩ g) = (e ∩ f) ∩ g

(ii) (f ∩ g) ∩ h = f ∩ (g ∩ h)

(iii) g ∩ (e ∩ f) ∩ h = (g ∩ f) ∩ (h ∪ (f ∩ g))

The 3.7: Suppose Q be a T-semiring and φ a fuzzy sub set of M. Then (i) φ(d) = min{φ(d), φ(m), φ(k)} ∀ d, m, k ∈ Q and φ ∈ Γ and z(d) = min{φ(d), φ(m), φ(k)} are equivalent ∀ d, m, k ∈ Q and φ ∈ Γ.

Proof: Assume that φ(d) = min{φ(d), φ(m), φ(k)} ∀ d, m, k ∈ Q and φ ∈ Γ. We may assume that φ(d) = φ(m) ≡ φ(k). Then φ(d) = φ(m) and φ(d) = φ(k), so z(d) = 1 - φ(d) = 1 - φ(k) = z(k) = z(φ). Therefore, z(d) = min{φ(d), φ(m), φ(k)} = min{z(d), z(m), z(k)} ∀ d, m, k ∈ Q and φ ∈ Γ.

Conversely, suppose that φ(d) = min{φ(d), φ(m), φ(k)} ∀ d, m, k ∈ Q and φ ∈ Γ. We may assume that φ(d) = φ(m) ≡ φ(k). Then z(d) = min{φ(d), φ(m), φ(k)} = min{z(d), z(m), z(k)} = z(φ) = z(k) = z(d) = min{φ(d), φ(m), φ(k)} = min{z(d), z(m), z(k)} = z(k). Therefore, φ(d) = min{φ(d), φ(m), φ(k)} ∀ d, m, k ∈ Q and φ ∈ Γ.
Th 3.8: Let R be a T_p-semi ring and $K \subseteq R$, $K \neq \emptyset$. Then K is a T_p-sub semi ring of R iff the fuzzy subset π_K is a fuzzy T_p-sub-semiring of R.

Proof: Obviously, π_K is a fuzzy subset of R. Let $u, v, w \in R$ and $\gamma, \delta \in \Gamma$. Then $\pi_K(u) = \pi_K(v) = 1$. Since $u \notin K$ or $v \notin K$ or $w \notin K$, we have $\pi_K(u) = 0$ or $\pi_K(v) = 0$ or $\pi_K(w) = 0$, then $\pi_K(u+v) \geq 1 = \pi_K(u) + \pi_K(v)$ and $\pi_K(uw) \geq 1 = \pi_K(u) \pi_K(w)$.

Conversely, suppose that $u, v, w \in K$ and $\gamma, \delta \in \Gamma$. Then $\pi_K(u) = \pi_K(v) = \pi_K(w) = 1$. Since π_K is a fuzzy T_p-sub semiring of R, we have $\pi_K(u+v) \geq 1 = \pi_K(u) + \pi_K(v) = \pi_K(w)$ and $\pi_K(uw) \geq 1 = \pi_K(u) \pi_K(w)$. Therefore the fuzzy subset π_K is a fuzzy T_p-sub semi ring of R.

Def 3.9: A non-empty fuzzy sub-set φ of a T_p-semi ring Q is called a fuzzy $L(L_a, R)$ T_p-ideal or simply fuzzy left T_p-ideal of Q if

(i) $\varphi(u+v) \geq \pi(\varphi(u), \varphi(v))$
(ii) $\varphi(uv) \geq \pi(\varphi(u), \varphi(v)) \varphi(uv) \geq \varphi(u) \varphi(v)$ $\varphi(uv) \geq \varphi(u)$ $\forall u, v, w \in Q, \forall \gamma, \delta \in \Gamma$.

Ex 3.10: Let $Q = [0, s, l, u]$ and Γ be the non-empty set of binary operations such that $\alpha, \beta' \in \Gamma$ is defined below:

<table>
<thead>
<tr>
<th>+ 0</th>
<th>0</th>
<th>a</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>s</td>
<td>t</td>
<td>u</td>
</tr>
<tr>
<td>a</td>
<td>t</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>v</td>
<td>u</td>
<td>a</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>w</td>
<td>u</td>
<td>a</td>
<td>u</td>
<td>a</td>
</tr>
</tbody>
</table>

Clearly Q is a T_p-semi ring. Define a fuzzy subset $\pi: Q \rightarrow [0, 1]$ by $\pi(x) = \begin{cases} 1 & \text{if } x=0, \alpha \\ 0 & \text{otherwise} \end{cases}$. Clearly, π is a fuzzy L-T_p-ideal of Q.

Def 3.11: A non-empty fuzzy sub-set σ of a T_p-semi ring Q is called a fuzzy $L(L_a, R)$ T_p-ideal of Q if

(i) $\sigma(f + g) \geq \min\{\pi(f), \pi(g)\}$
(ii) $\sigma(fgh) \geq \pi(f) \pi(g) \pi(h)$ for any $f, g, h \in Q$ and $\gamma, \delta \in \Gamma$.

Ex 3.12: Let the set \mathcal{W} of -ve integers with 0 be P and the set of negative even integers with 0 be B. Then P is a T_p-semi ring if $u, v, w \in P$ as well as $u+v, uv, uw$ as well as $u, v, w \in Q$ as well as $u, v, w \in \mathcal{W}$.

Let η be a fuzzy sub-set of Q, defined as follows:

$$\eta(m) = \begin{cases} 1, & \text{if } m = 0 \\ 0.1, & \text{if } m = -1, -2 \\ 0.2, & \text{if } m < -2 \end{cases}$$

Then η is a fuzzy T_p-ideal of Q.

Ex 3.13: Let $M = \{0, u, v, w\}$ and $\Gamma = \{\alpha, \beta\}$ be the non-empty set of binary operations defined below:
Th 3.16: Let $P(\emptyset)$ be a subset of a T-semiring Q and π be the characteristic function of I, then I is a $L(La, R)$ T-ideal of Q iff π is a fuzzy $L(La, R)$ T-ideal of Q.

Proof: Let P be a L-T-ideal of a T-semi ring Q. Let $x, y \in Q$ and $\gamma \in \Gamma$. Let $x + y \in I$ and $xy \in I$ if $x \in I$. It follows that $X_{\gamma}(x + y) = 1$ and $X_{\gamma}(xy) \in I = X_{\gamma}(x) \oplus X_{\gamma}(y)$. If $y \notin I$, then $X_{\gamma}(x) = 0$. In this case $X_{\gamma}(xy) = 0 = X_{\gamma}(x)$. Therefore X_{γ} is a fuzzy L-T-ideal of Q.

Conversely, suppose that X_{γ} be a fuzzy left T-ideal of S. Let $x, y \in I$, if $x + y \in I$, then $X_{\gamma}(x) = X_{\gamma}(y) = 1$ and $X_{\gamma}(x + y) \geq \min \{ X_{\gamma}(x), X_{\gamma}(y) \} = 1$ if $x + y \in I$. Thus $x + y \in I$. Therefore X_{γ} is a fuzzy L-T-ideal of Q.

In the similar manner one can prove remaining two parts.

Th 3.17: Suppose X be a $L(La, R)$ T-ideal of a T-semi ring V and $\gamma \leq \theta \neq 0$ be any two elements in $[0, 1]$, then the fuzzy subset π of X, defined by

$$\pi(x) = \begin{cases} 0 & \text{if } \theta x \in I \\ \gamma & \text{otherwise} \end{cases}$$

is a fuzzy $L(La, R)$ T-ideal of X.

Proof: Let X be a L-T-ideal of a T-semi ring V and $x, y \in [0, 1]$. If $x, y \in I$, then $x \in I$. Suppose $x \in I$ and $y \in X \leq \theta \neq 0$ and $y \in I$. Then $y \in I$. Therefore $x \in I$ and $y \in I$. Since X is a fuzzy T-ideal of V, the fuzzy subset $\pi(x)$ is a fuzzy L-T-ideal of X.

Th 3.18: Let V be a T-semiring and π be a non-empty fuzzy subset of V. Then π is a fuzzy $L(La, R)$ T-ideal of V if and only if π's are $L(La, R)$ T-ideal of V for all $t \in \text{Im}(\pi)$ where $\pi = \{ x \in V : \mu(x) \geq t \}$.

Proof: Let π be a fuzzy L-T-ideal of V. Let $t \in \text{Im}(\pi)$, then $\exists a \in V, \exists \pi(a) = t$ and so $\pi \geq \theta$. Suppose $\pi \notin \theta$. Let $a \in V$ and $\pi(a) = t$. Therefore $\pi \geq \theta$. Now let $a \in V$, then $\pi(a) = t$. So $\pi(a) = t$. Now $\pi(a) = t$. Therefore $\pi \geq \theta$. Similarly, π is a fuzzy L-T-ideal of V.

Conversely, suppose that π is a L-T-ideal of V for all $t \in \text{Im}(\pi)$. Again let $a, q \in V, s \in V$ and $x, y \in \Gamma$, then $\pi(a) = \pi(q) = t$. Since π is a L-T-ideal of V, the fuzzy subset π is a fuzzy L-T-ideal of V.

Conversely, suppose that π be a fuzzy L-T-ideal of V for all $t \in \text{Im}(\pi)$. Again let $a, q \in V, s \in V$ and $x, y \in \Gamma$, then $\pi(a) = \pi(q) = t$. Since π is a L-T-ideal of V, the fuzzy subset π is a fuzzy L-T-ideal of V.

Def 3.19: Let π be a T-semi ring and π be a fuzzy $L(La, R)$ T-ideal of a T-semi ring V. Then the T-ideal π's are know as fuzzy $L(La, R)$ T-ideal of V.

Th 3.20: Let π be a fuzzy $L(La, R)$ T-ideal of a T-semiring V and $t_1 > t_2$. Then $\pi_{\geq t_1} \subseteq \pi_{\geq t_2}$. Equality occurs iff there is no $x \in V \not\exists t_1 \leq \pi(x) < t_2$.

Proof: The 1st section of the theorem follows easily. Now let π be a fuzzy L-T-ideal of $V \not\exists \pi = \pi_{\geq t_1}$. If possible $t \in V \not\exists t \leq \pi(x) < t_2$. Then $x \not\in \pi_{\geq t_1}$ but $x \in \pi_{\geq t_2}$, it is contradiction. So $\pi_{\geq t_1} \subseteq \pi_{\geq t_2}$.

Conversely, let π be a fuzzy L-T-ideal of V that does not exist $x \in V$ with $t_1 \leq \pi(x) < t_2$. Then $t_1 \leq \pi(x) < t_2$. Then $x \not\in \pi_{\geq t_1}$ but $x \in \pi_{\geq t_2}$, it is contradiction. So $\pi_{\geq t_1} \subseteq \pi_{\geq t_2}$.