Distributed and Adaptive Efficient Energy Aware Routing Procedure for MANETs

T. Santhi Sri¹, J. Rajendra Prasad², R. Kiran Kumar³

¹PhD Scholar, Department of CSE, JNTUK, Kakinada, AP, India.
²Professor, Department of IT, PVP Siddhartha Institute of Technology, Kanuru, Vijayawada, AP, India.
³Assistant Professor, Department of Computer Science, Krishna University, Machilipatnam, AP, India.

*Corresponding Author Email: sri_santhi2003@yahoo.com

Abstract

In mobile ad hoc networks (MANET), power or energy consumption is a complex representation to define extensive communication between different nodes. To define energy routing scenario with respect to efficient energy maintenance to decrease the over burden of the protocol hierarchy wireless communication. To achieve these goals, a Synchronization-based Efficient Energy (SEE) calculation is supported along with the position opportunistic routing protocol previously to reduce overhead burden of server to maintain efficient energy. It consists distributed and random nature in which node consists local communication by facilitate packet transmitting in between different intermediate nodes based on backward communication. Because of random routing scenario of ad hoc networks, maintenance of capacity of each node for relay configuration at each node is a complex task. Due to that further extension of SEE, we introduce Collaborative & Efficient Energy Aware Distributed (CEEAD) approach, which consists routing representation in energy awareness scenario for wireless networks and it also supports cluster head representation of each node based on its random changes of power consumption in network communication. Our proposed approach consists cluster connectivity at each node because random routing process for wireless ad hoc networks. Our experimental results show effective increasing of network life time with scalable data communication in wireless networks.

Keywords: Wire ad hoc networks, energy efficient, position based opportunistic routing, energy aware routing scenario, cluster connectivity.

1. Introduction

Present day’s Mobile ad hoc networks (MANETs) are self configurable systems with inter-connection without any accessible point contention between different mobile nodes. In network, each mobile node is autonomous, each mobile node freely move throughout the network and organize them individually. In MANET, each mobile node share wireless data communication changes randomly with different scenario’s, breaking of network communication is very frequent whenever mobile node move anywhere in network communication. Main representation of MANET is to define mobile wireless communications with respect to set of nodes combined with routers and hosts. Taking this as efficient concern MANET maintain dynamic and efficient network communication with respect to robust and efficient operations in between mobile nodes by in corporating routing scenario for different mobile nodes. Following figure shows basic architecture of the MANET with communication between different nodes.

Fig. 1: Mobile network communication between different mobile nodes
communication. Some of the routing algorithms were proposed to explore each node capacity with different partitions network configurations. Explore the node energy, accuracy and other hierarchical important approaches to define energy representation of each node. Network life time can be defined as elapsed time at each node capacity in network with respect to their monitoring throughout network. Mainly consumption of energy/power can be appear because of evaluating data requests, forward request to others nodes, overhearing, packet collision, transmission of data, receiving data and handle packets throughout network specification. A number of techniques/protocols and algorithms were proposed to reduce energy consumption, a Synchronization-based Efficient Energy (SEE) calculation is supported along with the position opportunistic routing protocol previously to reduce overhead burden of server to maintain efficient energy. It consists distributed and random nature in which node consists local communication by facilitate packet transmitting in between different intermediate nodes based on backward communication. Because of random routing scenario of ad hoc networks, maintenance of capacity of each node for relay configuration at each node is a complex task. Due to that further extension of SEE, we introduce Collaborative & Efficient Energy Aware Distributed (CEEAD) approach, which consists routing with respect to energy aware scenario for wireless communication and it also supports cluster head representation of each node based on its random changes of power consumption in network communication. In our approach each node can be act as dynamic source and other features, which defines efficient energy aware routing algorithm to explore server according to network configurations with respect to different parameters in network. Finally each node may fail to its energy resource utilization which defines access able need to rotating server belongs each node load maintenance for efficient communication. Remains of this paper organized as follows: section 2 describes related work to define different network problems in this implemented work. Section 3 defines background work relate to reduction of energy consumption i.e SEE approach brief discussion. Section 4 defines proposed approach implementation that satisfy its motivations, section 5 shows simulated results of CEEAD, and compare to SEE with respect to generalized representation of energy consumption in data communication. Finally Section 6 gives concluding remarks and further implementations with respect to energy consumption in MANETs.

2. Review of Literature

This section gives brief and extreme discussion relate to different proposals relate to organize wireless networks. Diminishing vitality utilization because of inefficient sources has been basically tended to with regards to versatile MAC conventions, for example, PAMAS [4], DBTMA [15], EAR [6], and S-medium access control [7]. For instance, S-medium access control [7] occasionally nodes are in rest to maintain a strategic distance from sit tuning in and catching. TinyOS [8] acquaints irregular deferrals with break synchronization. Blue Noise Sampling [39] chooses all around disseminated nodes to stir keeping in mind the end goal to accomplish ideal field scope. Information dispersal conventions proposed for sensor systems consider vitality productivity an essential objective [6], [5], [4], [7]. Turn [6] endeavors to diminish data overflow information, accepting system configurations is driven (i.e., sink nodes report any watched occasion to intrigued spectators). Coordinated dissemination [5], then again, chooses the most productive ways to forward solicitations and so on, accepting that the organize is information driven (i.e., questions and information are sent by intrigued onlookers). Talk steering [4] gives a trade-off between the two methodologies (source-driven versus information driven). In [7], the spread issue is defined as a straightforward issue respect to vitality imperatives. This procedure expects worldwide information of node lingering vitality, and consists sink node activities with particular preparing capacities. In [14], a disjoint way steering plan is proposed in which vitality proficiency is the primary parameter. Clustering can be a reaction of other convention tasks. For instance, in topology administration conventions, for example, GAF [10], SPAN [11], and ASCENT [9], nodes are ordered with sectional area into identical reference classes. A small amount (agents) partakes in the steering procedure, while different nodes are killed to spare vitality. In GAF, network data is thought to be accessible in view of a situating framework, for example, GPS. Traverse deduces geographic closeness through communicate different messages and directing network updates. GAF, SPAN, & ASCENT share a similar goal of utilizing excess in detecting systems turn on & off, and draw out network configurations. In CLUSTERPOW [3], sensor nodes are thought heterogeneous network configurations. A sense node utilizes the base conceivable power level to forward information packets, so as to keep up availability while expanding the system limit and sparing vitality. The Zone Routing Protocol (ZRP) [12] for ad hoc networks isolates the system into covering, dynamic variants. A few disseminated grouping approaches have been proposed for versatile specially appointed systems & networks. The Distributed Clustering Algorithm (DCA) [16] accepts semi static nodes with real valued calculations. The Weighted Clustering Algorithm (WCA) [17] consolidates a relations in a single parameter (weight) i.e utilized for clustering. In [13], the creators propose utilizing a spreading over tree (or BFS tree) to deliver groups with some alluring properties. Vitality effectiveness, nonetheless, isn’t the essential focal point on network configurations. In [15] the creators introduce inactive grouping on request stirring in specially appointed systems. Prior work additionally proposed grouping in light of degree (availability) or least heuristics [12]. Time for clustering intricacy in the greater part of the above methodologies is reliant on the system distance across, not at all like HEED which ends in a consistent number of cycles. In [13], a various multi leveled structure is introduced, where cluster heads are chosen by lingering vitality length of cluster. Pro [14] groups the indicator organizes in consistent with no. of cycles utilizing as the fundamental attribute. In [20] chooses a d-jump commanding set in O (d) time to group the system in view of node port number. in [45] chooses a ruling set in consistent time utilizing complete software implantations unwinding methods. In [9], the creators contemplate the impact of various correspondence standards (single bounce versus multi-bounce) on the execution of grouping conventions. At last, various methodologies develop a grouped system with a specific end goal to advance steering while at the same time supporting versatility, e.g., [14].

3. Background Problem Statement

In this segment, depict first SEE arrange demonstrate usage and after that talk about our targets identifies with vitality utilization in MANET correspondence. Synchronization-based Efficient Energy (SEE) takes after and chooses organizers declaration and with drawl calculation methods and furthermore takes after sending directing in hub choice with numerous hubs. The SEE organizers synchronizes ceaseless hub situating and numerous information steering inside portable remote systems, while keeping hubs in the power sparing mode with progressive checking for every hub, regardless of whether it is a facilitator or some other hub in information transmission. For effective vitality support of the considerable number of hubs in the system, SEE normally takes after 4 conditions. The first is to keep up a base number of facilitators inside the transmission extend; furthermore, it dimensionally pivots organizers for keeping up square with availability for every one of the hubs. Thirdly, SEE keeps up arrange lifetime, and lessen loss of vitality or system inactivity for limiting the quantity of facilitators in organize correspondence. In conclusion,
while privately displayed data of every hub, the SEE chooses facilitators in a decentralized way to maintain the steering table in information transmission. The SEE contains a proactive property where in every hub discharges HELLO data that contain hub data (i.e. regardless of whether it is the facilitator or not in arrange correspondence) with its neighbor hub and organizers. From these HELLO data, each hub distinguishes a rundown of neighbors and facilitators found in the transmission of system correspondence. Strategy of system display related to vitality utilization arrange correspondence may appeared in figure 3 with various parameters identified with specially for ad hoc systems.

The SEE utilizes HELLO messages to keep up a dynamic topology incorporation and in addition authentic data. Consequently, at whatever point HELLO messages are lost, and after that SEE chooses more facilitators without soften up availability and information Energy Consumption in a system correspondence. SEE takes a shot at 802.11, over the physical layer with vitality sparing help in arrange correspondence. Basically, a vitality sparing capacity for specially appointed systems is to synchronize hubs inside the system transmission range. So main objectives of our proposed to satisfy and promotes efficient energy consumption with maintenance of cluster head and energy aware routing scenario is as follows:

1. Implement collaborative framework to maintain energy aware routing a cluster head representation to support dynamic routing scenario in MANETs.
2. Provide data transmission to support dynamic routing at each node in network communication.
3. Compare with SEE to explore high reduction of energy consumption and execution time in ad hoc network configurations.
4. Because of cluster maintenance, which is used to define fixed number of iterations to support data exchange and reduce processing complexity.

These objectives are defined and implemented in next section using different network parameters.

4. CEEAD Implementation

In this section, we describe CEEAD implementation. CEEAD consists two main steps to maintain energy consumption in ad hoc network communications. First, discuss basic parameters user in network clustering procedures, present basic procedure related to energy aware routing scenario in ad hoc networks with improvement of proposed approach to satisfy its basic requirements.

a) Network Cluster Attributes

This section describes to increase network performance with respect to throughput and other parameters relates to ad hoc network communication. So that, cluster head selection is primary achievement to calculate residual energy optimization aspect of each node, calculation of residual energy representation is not a matter to consume energy per each bit for processing, sensing and data communication typically known based on different initial parameter sequences so that residual energy is optimized and estimated. To increase network performance with respect to increase life time, and also maintain inter-communication with basic network parameters to create cluster parameter neighbor node selection. In this, primary cluster parameter to randomly select initial cluster set parameter sequences and then secondary cluster user breaks tie among to explore above cluster selection.

![Energy Synchronization Platform](image-url)
representations. Tie defines range of different nodes with respect to cluster head selection for all node configurations. To understand calculation of rand of each node by its typical iterations of transmission energy levels at each node, it should be combination of low transmission range of all the nodes with respect to neighbor nodes in networks. Based on this criteria identify inter connectivity cluster representations, it defines how many cluster present in network to optimize power analysis because of fluctuations in power representations. Secondary parameter defines intra communication based on cluster size and maintains intra communication power representations. This implies each node joins with cluster head at least network to disseminate group head stack (potentially to the detriment of expanded obstruction and diminished spatial reuse), or combine with most extreme degree to make thick groups. We utilize the terms least degree cost and greatest degree cost to indicate these cost composes. Observe that between clusters correspondences aren’t joined in the cost work since nearby data is deficient for this situation. Intra communication regarding different scenarios shown in table 1.

Table 1: Definitions of different intra communication scenario’s

<table>
<thead>
<tr>
<th>Energy</th>
<th>Similar</th>
<th>Minimum energy communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of Power</td>
<td>Based on Node identification</td>
<td>AMRP (Node Degree)</td>
</tr>
<tr>
<td>Cluster Density</td>
<td>Node configurations</td>
<td>Scenario of node</td>
</tr>
</tbody>
</table>

I. Initialize
1. \(S_{lib} \leftarrow \{ v : v \text{ lies within my cluster range} \} \)
2. Compute and broadcast cost to \(\in S_{lib} \)
3. \(CH_{prob} \leftarrow \max(C_{prob} \times E_{max}^{ip}, p_{min}) \)
4. \(ts, final.CH \leftarrow \text{FALSE} \)

III. Finalize
1. If \((ts, final.CH = \text{FALSE}) \)
2. If \(((S_{CH} \leftarrow \{ v : v \text{ is a final cluster head} \}) \neq \emptyset) \)
3. \(my.cluster.head \leftarrow \text{least.cost}(S_{CH}) \)
4. \(jom.cluster(cluster.head.ID, NodeID) \)
5. \(\text{else Cluster.head.msg(NodeID, final.CH, cost)} \)
6. \(\text{else Cluster.head.msg(NodeID, final.CH, cost)} \)

Basic design of EAR scenario for on-demand routing recovery procedure as follows: First source node sends flooding type of RREQ, RREP throughout the network with transmission power values \(E_{i} \) which represents as follows:

\[
0 < E_{i} \leq E_{p_{max}}
\]

in this represents universal transmission energy at each node. First source node defines locally. A RREQ conveys the conclusion to cross a connection (at first zero) related with the sub-path that it takes and furthermore an arrangement number exceptionally allocated by the sender node source. On the off chance that planned out without getting route request packet processing, the source conjures a EAR (2) route request reply process for conveying another power be chosen from cluster head representation in ad hoc networks. Basic design implementation of proposed approach with respect to cluster node selection and other parameters relates to energy aware routing scenario as shown in below figure 3. As shown in figure 3, first initialize all the recommended parameters relates network configuration to explore packet broadcasting related to cluster head selection, at different power levels for each node in wireless communication may repeat the procedure of primacy cluster selection from all the nodes, lastly, finalize the cluster head with respect to node ip, port and other network parameters.

b) Energy Aware Routing (EAR) Scenario

EAR goes for getting low-control courses in systems wherein each node adaptively & modify its data communication control contingent upon which neighboring sensor node it imparts with. The plan objective is to limit the vitality exhausting rate at singular nodes by choosing ways for low level communication in between senor nodes. EAR takes after the essential thought behind EAR for finding vitality effective courses yet focalizing regarding an alternate metric and in like manner utilizes diverse techniques. In particular, EAR works by progressively unwinding the uniform communication control chose by the course scanning initiator for intermediate node communication for forwarding neighbor nodes that they get if prior directing attempt(s) fall flat. Thusly, the steering procedure goes for limiting the power expended at every individual node for taking part in a course looking procedure and furthermore lessening the power related with the came about way.

II. Repeat
1. If \(((S_{CH} \leftarrow \{ v : v \text{ is a cluster head} \}) \neq \emptyset) \)
2. \(my.cluster.head \leftarrow \text{least.cost}(S_{CH}) \)
3. If \((my.cluster.head = \text{NodeID}) \)
4. If \((CH_{prob} = 1) \)
5. \(\text{Cluster.head.msg(NodeID, final.CH, cost)} \)
6. \(ts, final.CH \leftarrow \text{TRUE} \)
7. \(\text{Else} \)
8. \(\text{Cluster.head.msg(NodeID, tentative.CH, cost)} \)
9. \(\text{ElseIf (CH_{prob} = 1)} \)
10. \(\text{Cluster.head.msg(NodeID, final.CH, cost)} \)
11. \(ts, final.CH \leftarrow \text{TRUE} \)
12. \(\text{ElseIf Random(0,1) \leq CH_{prob}} \)
13. \(\text{Cluster.head.msg(NodeID, tentative.CH, cost)} \)
14. \(CH_{previous} \leftarrow CH_{prob} \)
15. \(CH_{prob} \leftarrow \text{min(CH_{prob} \times 2, 1)} \)

Until \(CH_{previous} = 1 \)
control esteem required for an effective transmission along such a connection, rather than utilizing energy at each node i genuinely sent route reply(s) before as sender node recommended processing the route recovery.

5. Experimental Evaluation

This section explores the performance of CEEAD based on simulation parameters shown in table 2, assume that 50-100 nodes are uniformly described into different field of dimension 2500x2500, select the random selection cluster head within the range of 0-0.568 for different nodes less than 15 Amp, for this case number of iterations may increase because of power levels of different nodes.

Table 2: Simulation network parameters

<table>
<thead>
<tr>
<th>Simulation Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>From 0-100 with maintenance of initial parameters</td>
</tr>
<tr>
<td>Application Cluster, Packets,</td>
<td>Cluster size is 35, packet size from 5-55 bytes, based on time frames</td>
</tr>
<tr>
<td>Iterations. Radio Technique</td>
<td>Distance from 45-115m, power utilizations from 0.013/bit to 50 Amp.</td>
</tr>
</tbody>
</table>

Based on above parameters, we give numerical outcomes to assess the execution of the planned conventions by outlining a discrete-occasion test system. The reenactment setting is as per the following. The quantity of different nodes is constantly and remaining nodes are in static range. The large communication extends to 100 meters. Different odes are consistently disseminated in a network region whose size is ascertained to acquire an alluring node thickness (sender nodes for every correspondence zone to 18). We ponder just those associated systems and for every attribute setting, 1000 irregular systems were made. Each connection is related with a power standardized over the most extreme data communication control. Every node is at first allocated an arbitrarily chose vitality from the (standardized) scope of [Emin, Emax]=[1000, 20000]. In every arbitrary system, an aggregate number of ten associations were directed whenever. Each association is related with a source and a goal, which are arbitrarily chosen. The term of every association goes on for different 15-20 seconds and the parcel creating rate per association and then forwarded at each second with five packets. Each recreated convention was individually called to set up an association for each demand. In our test, every packet is related with a (standardized) maximum bit length, separately. Every packet data communication will charge an identical measure of vitality to the relating sending node. After that, we compare CEEAD and SEE with respect to random route selection in terms of time with respect to multiple number of route requests were processed with referable energy maintenance shown in figure 4.

Figure 4, compares time comparison of both techniques, whether CEEAD approximately gives better and accurate bit processing with different time intervals. Performance of CEEAD may increase with respect to different data communication values.

![Figure 4: Average time performance of using different techniques](image)

Figure 5 compares normal measure of control (counting route request and replies) devoted for procuring a way by various conventions. Above figure demonstrates that CEEAD can extraordinarily lessen the correspondence overhead brought about per course obtaining. In addition, the measure of the diminishment increments as hub thickness expanding. This is on account of a littler arrangement of (vitality rich) hubs is liable to shape an associated ruling relates to CEEAD or the system is probably going to be associated by utilizing a littler uniform range for CEEAD when hub connections are high. The execution as far as control overhead from the best to the most exceedingly terrible is CEEAD and SEE. The two parameter performs the distinction between different nodes is expected just to the distinction in route request processing and reply sending.

![Figure 5: Power consumption per route acquisition with different node values](image)

As shown in figure 6, CEEAD gives better performance to increase the network life time to its random nature communications with respect to dynamic selection of routing with energy representations.

![Figure 6: Network life time with respect to packet loss](image)

Fig. 7: Average node density with respect to different nodes

For this purpose, our proposed approach probably selects network nodes for dynamic route search in between intermediate nodes with selection min and max energy representative based on different power utilizations. Our simulation results demonstrate to give better performance with respect different network parameters and also reduce overhead consumption of network in dynamic route selection. Further extension of our proposed approach is to support multi-level hierarchy with respect to load maintenance and define fault tolerance and increase the flexibility in data communication for MANETs.

6. Conclusion

Energy is the main concern in wireless ad hoc communication networks, so this paper presents CEEAD. This technique is combined two basic steps to configure ad hoc networks, first one, maintain of primary selection of cluster head among all of the nodes. Secondly, design of efficient energy aware routing to reduce burden of acquiring different routes in ad hoc networks. For this purpose, our proposed approach probably selects network nodes for dynamic route search in between intermediate nodes with selection min and max energy representative based on different power utilizations. Our simulation results demonstrate to give better performance with respect different network parameters and also reduce overhead consumption of network in dynamic route selection. Further extension of our proposed approach is to support multi-level hierarchy with respect to load maintenance and define fault tolerance and increase the flexibility in data communication for MANETs.

References

