Enhanced and Explored Intuitionistic Rough Based Fuzzy C-means Approach for MR Brain Image Segmentation

B. Prasanthi 1*, DR N. Nagamalleswararao 2

1Research Scholar, ANU, Guntur, AP, India
2Assistant Professor, Department of IT, R.V.R & J.C College of Engineering, Guntur, Andhra Pradesh, India

Abstract

Segmentation of magnetic resonance images is medically complex and important for study and diagnosis of medical brain images, because of its sensitivity in terms of noise for brain medical images. These are the main issues in classification of brain images. Because of uncertainty & vagueness of brain medical images, so that rough sets, fuzzy sets and Rough sets are mathematical tools evaluate and handle uncertainty and vagueness in medical brain images. Traditionally, different type of fuzzy sets, Rough sets and rough sets based approaches were introduced, they have different several drawbacks with respect to different parameters. So this paper introduces a novel image segmentation calculation method i.e. Enhanced and Explored Intuitionistic Rough based Fuzzy C-means Approach (EEISFCMA) with estimation of weight bias parameter for brain image segmentation. Intuitionistic Rough based fuzzy sets are generalized form of fuzzy, Rough sets and their representative elements are evaluated with non-membership and membership value. Proposed algorithm of this paper consists standard features of existing clustering without spatial weight context data, it defines sensitive of noise in brain images, so that our proposed algorithm deals with intensity and noise reduction of brain image effectively. Furthermore, to reduce iterations in clustering, proposed algorithm initializes cluster centroid based on weight measure using max-dist evaluation method before execution of proposed algorithm. Experimental results of proposed approach carried out efficient image segmentation results compared to existing segmented approaches developed in brain image and other related images. Mainly proposed approach have consists better experimental evaluation based on results.

Keywords: Image segmentation, Rough sets, fuzzy sets and rough sets, magnetic resonance, Intuitionistic Fuzzy sets, noise reduction and image intensity.

1. Introduction

Now a day’s increasing of anatomical architectures and other interest of regions, segmentation of image calculations play a vital role in medical image applications like tissue volume recommendations based on quantification, diagnosis and integrated computer surgery development applications. Segmentation of image is an crucial utility function in study of image analysis and processing of image in real time medical applications, in that magnetic resonance (MR) segmentation have numerous application in terms classification of image with treatment planning, partial implementation of correct functional image data. Segmented image consist white matter (WM), grey matter (GM) and cerebro spinal fluid (CSF). Exploration of these regions of interest from image is an aggressive concept for image analysis for segmentation of brain images. In biomedical image analysis, magnetic resonance has different advantages, MR analysis give huge amount of patient data, consuming time and manual segmentation involved in brain images, this manual segmentation have high level of expertise in neuro anatomy and in some cases it leads to explore human error. So that automatic brain tumor segmentation is desirable to define spatial image intensity with non-uniformity based on radio frequency (RF). This MRI image segmentation mainly consist three different scenarios: noise, intensity and partial volume effective.

Image heterogeneous intensity by radio frequency in magnetic image resonance is main problem in computer aided analysis of MRI information, this procedure causes misclassification and overall aping tissues when ever different image segmentation methods involved in brain medical images. Hence different types of clustering and other image segmented methods were introduced with distribution of image data unlike supervising. Traditionally some of clustering algorithms like k-means based on predefined crisp image set, in that each pixel is associated with unique cluster at a time and in fuzzy c-means clustering approach each cluster collision with each other and other some of the traditional models are discussed in literature.

For efficient image segmentation, consider spatial content and regions of interest in Rough computing approaches like rough sets, these approaches were incorporated with k-means and fuzzy c-means in image segmentation. All the techniques discussed in literature consists some disadvantages in arrangement of cluster based on regions of image. Grouping of pixels into rough region based on predefined threshold value, this threshold value is calculated based on least or greatest membership parameter which is depends on initial centroid of cluster. Some time, these results give negative region in cluster selection, and defining these regions is very complex. Sample brain image segmentation results were appeared in figure 1.
Some of the intuitionistic fuzzy sets or rough sets were introduced in the literature. These approaches have basic limitations in formation of cluster with threshold values. Beside these limitations present in rough set for cluster region selection has great challenge in brain image segmentation. Rough set and fuzzy sets were applied for MR image segmentation to handle selection of accurate region of image with better segmentation results. Based on lower and upper boundary approximation values of images Rough fuzzy rough sets are involved to divide and classify segmented results for medical brain image. Feng et al explains the concept of fuzzy rough and Rough sets in image segmentation with decision making. Because of heterogeneous region selection of brain images and different weight selection these methods have basic problems and produced segmentation errors. So that increase robustness of segmentation in heterogeneous image intensity in medical images, this paper presents Enhanced and Explored Intuitionistic Rough based Fuzzy C-means Approach (EERIFCM) with estimation of weight bias parameter for brain image segmentation, this method compare with segmented results of existing methodologies developed in fuzzy Rough and rough sets based MR image segmentation. This approach is developed by complete change or modifying region selection objective function of intuitionistic fuzzy Rough and rough sets with weight bias function to explore intensity of in homogeneity during image segmentation. Intuitionistic Rough based fuzzy sets are generalized form of fuzzy. Rough sets and their representative elements are evaluated with non-membership and membership value. Furthermore, to reduce iterations in clustering, proposed algorithm initializes cluster centroid based on weight measure using max-dist evaluation method before execution of proposed algorithm. Experimental results give better performance results when compared with existing approaches.

2. Review of Related Work

This section describes different research authors opinion regarding different techniques used for image segmentation of different brain medical images. Mushrif and Ray [11] proposed calculation for shading picture division utilizing IFS histon-based multi-edge for characterizing participation capacities. Chandra and Tamalika proposed novel IFS c-implies for edge identification and sectioning therapeutic pictures utilizing Yager-type IF enrollment work [2, 13]. Atanassov's IF participation work [14] has been as of late used to decide the ideal limit an incentive for dark level picture division. Ananthi et al. [15] proposed dim scale picture division utilizing various participation capacities, interim esteemed IF for mind tumor division [16] and a Sugeno fuzzy generator-based intuitionistic FCM bunching for trim pictures [17]. Verma utilized another fuzzy factor to consider spatial setting and Dubey [10] utilized supplement work for reluctance participation capacity to fragment MR cerebrum picture [8, 9].

The IFS-based calculations are fit for taking care of the commotion and INU exhibit in the pictures. Be that as it may, IFS calculations are subject to the IF enrollment works with a specific end goal to characterize IFS triple participation vector. Tincher et al. [8] demonstrated inhomogeneity work by a moment arrange polynomial and fitted it to a uniform apparatus examined MRI. The homomorphic separating way to deal with evacuate the multiplicative impact of inhomogeneity has additionally been ordinarily utilized because of its simple and proficient usage [12,13]. What's more, these methodologies accept that the power defilement impacts are the same for various patients, which isn't substantial as a rule [9,10]. Meyer et al. [11] introduced an edge-based division plan to discover uniform locales in the picture took after by a polynomial surface fit for those districts. In any case, the consequence of their adjustment relies upon the nature of the division step. Dawant et al. [14] built up a two-advance approach for estimation of predisposition field. In this approach first "reference focuses" are chosen for no less than one tissue class (they utilized white issue) all through the picture, at that point a thinplate spline is "minimum squared" and fitted to the reference point information. They recommend the coefficient of varieties as a measure for the level of reclamation. Sijal and Lin Yu [2] introduced an altered Fuzzy c-Means (FCM) calculation for inclination (aditionally called force inhomogeneities) estimation and division of MRI. They manage Gaussian clamor and force inhomogeneity successfully. Shen et al. [15] introduced a technique which is called Improved Fuzzy Segmentation (IFS) calculation to rectify the power non-consistency amid division. Despite the fact that the MRI pictures may show up outwardly uniform, such inhomogeneities can cause genuine mis-groupings when force based division methods are utilized [4]. To enhance the productivity of picture division and inclination revision, Yang and Tsai [16] proposed a calculation which is named as the Gaussian Kernel based Fuzzy c-Means calculation (GKFCM) with a spatial predisposition rectification. Another approach in light of the fuzzy c-implies [17,18] grouping system has been utilized for picture division [19]. Ahmed et al. [4] has imagined Bias Corrected Fuzzy c-Means [BCFCM] for managing predisposition field in mind pictures. Chuang et al. [20] proposed fuzzy c-implies grouping with spatial data to manage power non-consistency and to expel uproarious spots amid picture division. Yang et al. [21], LiMaand Staunton [22], Jiayin Kang et al. [23], and Zhou Xiancheng et al. [24] have proposed novel altered fuzzy c-implies calculation by joining the spatial neighborhood data into the standard FCM calculation to evacuate force inhomogeneities in therapeutic pictures. Anupama Namburu et.al defines basic implementation of MR brain image segmentation based on fuzzy rough and Rough sets. Based on limitations of approaches discussed in above, we implement advanced and enhanced approach to define image segmentation effectively.

3. Background Notations

Basic idea present in [32] relates to intuitionistic fuzzy set theories by combine relations from G to E with the rough based intuitionistic fuzzy relations and identify the attributes of intuitionistic fuzzy based rough and Rough relational approximation operators.

Let us consider \( (G, E, R) \) be Rough oriented rough data relations. For any \( A = \{(a, (a), γ A (a)) \mid a ∈ E \} ∈ IF(E) \), the reduced and higher Rough estimates of \( A \) based to \((G, E, R)\), denotes \( R(A) \) and\( R(A)\), are, respectively, and relations as follows:

\[
\widetilde{K}(A) = \left\{ (\mu, \mu_{R(A)}(v), γ_{R(A)}(\mu)) : \mu ∈ G \right\}
\]

Where

\[
\mu_{R(A)}(v) = \sum_{x R_{i}(v)} \mu_{A}(a)
\]

\[
γ_{R(A)}(a) = \nabla_{x R_{i}(v)} γ_{A}(a)
\]

For any \( A = \{(a, (a), γ A (a)) \mid a ∈ E \} ∈ IF(E) \), the reduced and higher Rough estimates of \( A \) based to \((G, E, R)\), denotes \( R(A) \) and\( R(A)\), are, respectively, and relations as follows:

\[
\widetilde{K}(A) = \left\{ (\mu, \mu_{R(A)}(v), γ_{R(A)}(\mu)) : \mu ∈ G \right\}
\]

Where

\[
\mu_{R(A)}(v) = \sum_{x R_{i}(v)} \mu_{A}(a)
\]

\[
γ_{R(A)}(a) = \nabla_{x R_{i}(v)} γ_{A}(a)
\]
We can remember that \((A)\) and \((\hat{A})\) are two IF sets on \(G\). Thus the couple \(((A), (\hat{A}))\) is known as a Rough rough IF set is relation with \(A\) regard to \((G, E, R)\), and \(R, R: \text{IF}(E) \rightarrow \text{IF}(G)\) are referred to as higher and lower Rough rough IF approximate relative operations respectively.

### 3.1 Intuitionistic Fuzzy Rough Sets

Zhou and Wu et al. first presented the concept of fuzzy related rough intuitionistic sets. In this area, by combining the fuzzy with relative Rough set regards with the intuitionistic fuzzy rough places [3], the beneficial definition of intuitionistic fuzzy Rough sets; further increase rough intuitionistic fuzzy places discussed above procedure, and investigate some properties of Rough and fuzzy oriented intuitionistic approximation operators

Let us consider \(G\) be a preliminary home set and let \(E\) be a home set of factors. For dynamic Rough set relation \(R\) over \(G \times E\), the happy couple \((G, E, R)\) is known as approximate fuzzy Rough section. For any \(A \in \text{IF}(E)\), we determine the maximum & reduced smooth estimates of \(A\) regards to \((G, E, R)\) and the relations between different parameters are denoted by \((A)\) and \((\hat{A})\) with basic relations as shown in bellow:

\[
\hat{R}(A) = \{ \{ \mu, \mu_{R(A)}(\nu), \lambda_{R(A)}(\nu), \mu \in G \} \}
\]

Where

\[
\mu_{R(A)}(\nu) = \nabla_{a \in E}(\nu) \left[ \mu_A(a, \nu) \right] \\

\lambda_{R(A)}(\nu) = \nabla_{a \in E}[1 - (\lambda_A(v, a) \wedge \lambda_A(a))]
\]

The happy for couple relations \(((A), (\hat{A}))\) is known to an IF rough based rough set of \(A\) regard to relations basic \((G, E, R)\).

Hence, \((A) \in \text{IF}(U)\). In the same way, the obtained basic relation \((A) \in \text{IF}(G)\). So we call \(R, R: \text{IF}(E) \rightarrow \text{IF}(G)\) the top and low IF rough based Rough approximate relations, respectively.

### 3.2 Fuzzy C-Means

Fuzzy based clustering consist over lapping with each cluster, segmentation of data like \(\{a_1, a_2, a_3, ...... a_n\}\) and \(\{k_1, k_2, k_3, ...... k_n\}\) are the fuzzy clusters, then objective function of the intuitionistic fuzzy c-means is

\[
H_{RCM} = \begin{cases} \\
A_i, & \text{if } (R(D_j) \neq \phi, J(D_j) = \phi) \\
B_i, & \text{if } (R(D_j) = \phi, J(D_j) \neq \phi) \\
X_1 = X_i \ast A_i + X_h \ast B_i; & \text{if } (R(D_j) \neq \phi, J(D_j) \neq \phi)
\end{cases}
\]

Where

\[
A_i = \sum_{j=1}^{k} \sum_{a \in R(B_j)} ||a_i - B_j||^2 \\
B_i = \sum_{j=1}^{k} \sum_{a \in R(B_j) - R(B_j)} ||a_i - B_j||^2 \ast (u_{ij})^m \\
J(D_j) = R(C_j) - R^*(C_j)
\]

\[
T = \left( \frac{u_{ij}}{\text{arg} \max (u_{ij})} \right) < \text{threshold}
\]

\(u_{ij}\) defines the degree of \(i^{th}\) pixel representation to \(j^{th}\) fuzzy cluster with different regions. Based on above calculation for fuzzy c-means is used to determine the threshold value with different parameters based on degree of pixel value.

### 4. EEISFCMA Implementation Procedure

Main objective parameters for defined function i.e. \(K(X, Y, \alpha)\) to minimize standard representations for c-means for image segmentation in brain medical images. First we take derived parameters of defined function \(K(X, Y, \alpha)\) with respect to membership parameters \(x_{ij}\), cluster centroid \(v_j\) and biased field \(\alpha_k\) setting them into 0 and results of estimation matrixes of \(X(\text{membership matrix}), Y(\text{centroid matrix})\) and \(\alpha(\text{bias matrix})\).

Based on these estimated results, we form our novel calculation and compute the classification of tissue and bias function field.

Newly generated function of proposed approach is

\[
K(X, Y, \alpha) = \sum_{i=1}^{c} \sum_{k=1}^{n} x_{ik} ||g_k - \omega_k \alpha_k - y_{ij}||^2 + x \left(1 + \sum_{i=1}^{c} x_{ik}^m \right)
\]

Where \(x = \frac{k}{n}\)

#### 4.1 Estimation of Bias field

Taking the derivative of \(K(X, Y, \alpha)\) with respect to \(\alpha_k\) and assign them into 0 then we have

\[
\frac{\partial K(X, Y, \alpha)}{\partial \alpha_k} = \sum_{i=1}^{c} \sum_{k=1}^{n} x_{ik} (g_k - \omega_k \alpha_k - y_{ij})^2
\]

Second summation of \(k^{th}\) term with respect to \(\alpha_k\) then we have the following expression

\[
- \sum_{i=1}^{c} x_{ik} g_k + \sum_{i=1}^{c} \omega_k x_{ik} g_k + \sum_{i=1}^{c} x_{ik} v_k = 0
\]

Differentiating the distance expression, then we obtain following expression

\[
- g_k \sum_{i=1}^{c} x_{ik}^m + \omega_k g_k \sum_{i=1}^{c} x_{ik}^m + \sum_{i=1}^{c} x_{ik} v_k = 0
\]

\[
\omega_k^* g_k \sum_{i=1}^{c} x_{ik}^m = g_k \sum_{i=1}^{c} x_{ik}^m - \sum_{i=1}^{c} x_{ik} v_k
\]

Distance based gradient function for bias field function is as follows:
\[ \alpha_k = \frac{1}{\omega_k} \left( y_i - \sum_{i=1}^{c} x_{ik}^m y_k \right) \]  

(14)

If \( \omega \in (0, 1) \) is the weight of membership function, then generated bias data is \( \omega = 0.007 \) and increase this from 0.001

to \( \omega_2, \omega_3, \ldots, \omega_0 \).

### 4.2 Updated Centroid of Cluster

Again taking the derivative of \( K(X, Y, \alpha) \) with respect to \( y_i \) and setting results is zero, then generated function is

\[
\left[ \sum_{k=1}^{n} x_{ik}^m (g_k - \omega_k \alpha_k - y_i) \right] = 0
\]

(16)

Where \( y^* = \frac{\sum_{k=1}^{n} x_{ik}^m (g_k - \omega_k \alpha_k)}{\sum_{k=1}^{n} x_{ik}^m} \) after solving the above equation.

### 4.3 Intuitionistic Fuzzy Based Image Representation

Intuitionistic fuzzy sets [IFS] representation of image for image segmentation in [22, 23, 24, 25]. The presented image consists of \( N \times M \) size and the value of each pixel in image i.e. \( A = \{ a_i \mid a_i \}, \) where \( i \) is in between 1 to \( N \times M \), then image \( X \) to be represented in IFS as follows:

\[ X = \{(a_i, \mu(a_i), \pi(a_i)) \mid a_i \in A\} \]

(15)

with \( \gamma(a_i) = 1 - (\mu(a_i) + \pi(a_i)) \), where \( \mu(a_i) \) is membership function and \( \pi(a_i) \) is non-member function and \( \gamma(a_i) \) is the mean pixel value of image. After evaluating fuzzy image representation update each cluster based on different pixel values of image.

### 4.4 Evaluation of Membership

After minimize the equation 1, with different constraints using Lagrange multiplier calculation

\[
L(X, Y, \alpha) = \sum_{i=1}^{n} \sum_{k=1}^{c} x_{ik}^m \| g_k - \omega_k \alpha_k - y_i \|^2 + x \left( 1 + \sum_{i=1}^{n} x_{ik}^m \right) + y \left( 1 - \sum_{i=1}^{n} x_{ik}^m \right)
\]

(17)

After taking derivative of \( L(X, Y, \alpha) \) with respect to \( x_{ik} \) and set result into zero, then we have

\[
\frac{\partial K(X, Y, \alpha)}{\partial x_{ik}} = \left[ \sum_{i=1}^{n} x_{ik}^m \| g_k - \omega_k \alpha_k - y_i \|^2 + x \sum_{i=1}^{n} x_{ik}^m - y \right]_{x_{ik} = x_{ik}^*} = 0
\]

(18)

After solving the above equations based on different parameters for membership parameter sequences can be re-written as follows:

\[
x_{ik}^* = \sum_{j=1}^{n} \left( \frac{\| g_k - \omega_k \alpha_k - y_i \|^2 + x}{\| g_k - \omega_k \alpha_k - y_i \|^2 + x} \right)^{-1}
\]

(19)

In the above equation \( c \) is number of centroid; \( g \) is gain function and \( \gamma \) is constant for membership function with different parameters. Clustering shapes with different height and weight parameters as follows:

![Different types of cluster shapes with different spatial biased parameters](image)

Algorithm implementation of proposed method is as follows:

- **S-1:** Find the number of clusters and define centroid using dist-max calculation method and assign intermediate parameter values \( \{ \omega \}_{k=1}^{n} \) and set \( \{ \alpha_k \}_{k=1}^{n} \) and this equal to 0 or small values.
- **S-2:** Based on equat. 14, update estimation of bias field representation.
- **S-3:** Update cluster centroid based on equation 15.
- **S-4:** Based on equat. 18 compute membership function.
- **S-5:** Repeat this procedure until termination of
overall segmentation (termination of generated function is $\| x^{t+1}_k - x^t_k \| < \mathcal{K}$) where $\| \cdot \|$ the Euclidean distance value is $\mathcal{K}$ is the smallest number during centroid initialization process.

Procedure of the dist-max calculation method is as follows:

<table>
<thead>
<tr>
<th>Step-1:</th>
<th>Sort all parameters in ascending order $m_k = \frac{1}{p} \sum_{s=1}^{p} \mathbf{N}_k$, $k = 1, 2, ..., n$ for different dimensional data i.e. $X = {x_1, x_2, ..., x_n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step-2:</td>
<td>Re-organize the labeled matrix data $X' = [x'_1, x'_2, ..., x'_n]$, and divide data into different groups and define $c(1 &lt; c &lt; n)$ is the clusters such that final $j^{th}$ value to $j^{th}$-1 grouped elements, where $j = (1, 2, ..., c)$</td>
</tr>
<tr>
<td>Step-3:</td>
<td>Evaluate the distance between different elements within each cluster $i = [x'_1, x'_2, ..., x'<em>n]$ and matrix for distance is $d</em>{ij} \in \mathbb{R}^{N \times N}$</td>
</tr>
<tr>
<td>Step-4:</td>
<td>Select the maximum distance of each cluster different matrix formations, if $d_{ij}$ is increased then mean, and all the elements $\mathbf{N}_i$ and $\mathbf{N}_j$ with different cluster values.</td>
</tr>
</tbody>
</table>

5. Performance Evaluation

Efficiency of the proposed approach i.e. EEISFCMA is evaluated on publicly available brain images, for example we collected brain images from https://www.nitrc.org/frs/?group_id=48&release_id=3124 and http://brainweb.bic.mni.mcgill.ca/brainweb/ with simulated brain image databases. We download these images from web urls and then convert into Matlab readable format and then we can pre-process for feature extraction to segment images using readable Rough ware i.e analysis and visualization of image. Proposed approach can be implemented in Latest Mat lab version with latest system configurations and this section describes implemented results. This section describes experimental results of different traditional approaches like k-means, fuzzy c-Mean, Generalized Fuzzy C-means, Gaussian Kernel based Fuzzy c-Means algorithm (GKFCM) and Rough fuzzy rough sets c-means (SFRCM) with proposed approach at segmentation accuracy and jacquard co-efficient for brain segmented images. EEISFCMA with dist-max calculation method is used for segmentation of weighted MR brain images for noise reduction using “Gaussian” with experimental evaluation shown in figure 3.

Figure 3 shows Gaussian noise ratios at different levels with respect to white matter(WM), grey matter (GM) and cerebro spinal fluid(CSF) at three different stages i.e. average, median and weight filter for efficient segmentation results for MRI brain images. Results appeared for average filter with different pixel levels shown in figure 4.

![Fig. 3: Weighted brain images in different formats with noise filtering sequences](image_url)

![Fig. 4: Resultant images with different formations on average pixel values](image_url)
Figure 4 shows different types of brain images with noise reduction at different ratios in real time brain medical image segmentations.

Results appeared for median filter with different pixel levels shown in figure 5 for WM, GM and CSF for brain images.

![Image](image1.png)

**Fig. 5:** Resultant images with different formations on medium pixel values

Figure 5 shows different values of proposed approach results with median pixel values at different WM, GM and CSF formations. First, we give input image of brain then it converted into different formations and then it will get different output formations at different pixel levels. Results appeared for weight filter with different pixel levels shown in figure 6.

![Image](image2.png)

**Fig. 6:** Resultant images with different formations on weighted pixel values

Figure 6 shows proposed approach results with weighted segmented filter sequences performed on brain images at different regions. In each image first assign cluster based on dist-max distance at different regions, then convert all the preferred image pixels. As shown in above figures, k-means (KM), fuzzy c-Means (FCM), Generalized Fuzzy C-means (GFCM), Gaussian Kernel based Fuzzy c-Means algorithm (GKFCM) and Rough fuzzy rough sets c-means (SFRCM) with spatial correlated parameters for each image. SFRCM gives bad performance in the presence of noise ratios and FCM, GFCM, GKFCM with spatial bias function and produced somehow results compare with SFRCM. Our proposed approach gives better and superior results at different segmentation filter sequences with extension of intuitionistic fuzzy rough sets.

**Quantitative Analysis**

Segmentation results of our proposed approach are performed by ground truth analysis with performance measures like JC (Jacquard Co-efficient) and SA (Segmentation Accuracy). JC of brain data sets is resultant division between different properties.

\[ JC = \frac{X \cap Y}{X \cup Y} \]

Where X is the resultant segmented image and Y is the Ground truth image, if JC>70% then segmentation result is good otherwise it is not good.

Segmentation accuracy is another performance measure to compare similarity between resultant image and ground truth image with respect to different pixel values. Calculation of SA is depends up on following four parameters:

(i) True positive (TP): Number of genuine pixels in the ground truth image which are accurately distinguished as fragmented pixels.

(ii) True negative (TN): Number of false pixels in the ground truth which are accurately distinguished as sectioned pixels.

(iii) False positive (FP): The quantities of genuine pixels in the ground truth which are absent in the sectioned region.

(iv) False negative (FN): The quantity of false pixels in the ground truth which is present in the sectioned region.

Our proposed works gives better noise reduction results and define less iteration when compare to above discussed approaches.
6. Results
Above sections gives the performance evaluation of different approaches in brain image segmentation, performance of many clustering and other approaches is effected due to selection of initial cluster. Proposed approach optimized centroid based on weight measure parameter with bias field function calculated using dist-max function in real time representation (from Eqs 10-18). Table 1 shows experimental values with comparison of traditional approaches in segmentation accuracy and jaquards coefficient.

<table>
<thead>
<tr>
<th>Noise Ratio</th>
<th>Type of Tissue</th>
<th>KM</th>
<th>FCM</th>
<th>GFCM</th>
<th>GKFCM</th>
<th>SFRCM</th>
<th>Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>GM</td>
<td>0.9565</td>
<td>0.9684</td>
<td>0.9552</td>
<td>0.9539</td>
<td>0.9732</td>
<td>0.9962</td>
</tr>
<tr>
<td></td>
<td>CSF</td>
<td>0.9840</td>
<td>0.9843</td>
<td>0.9708</td>
<td>0.9771</td>
<td>0.9864</td>
<td>0.9941</td>
</tr>
<tr>
<td></td>
<td>WM</td>
<td>0.9620</td>
<td>0.9705</td>
<td>0.9646</td>
<td>0.9725</td>
<td>0.9872</td>
<td>0.9949</td>
</tr>
<tr>
<td>3%</td>
<td>GM</td>
<td>0.8543</td>
<td>0.8592</td>
<td>0.8520</td>
<td>0.8510</td>
<td>0.8920</td>
<td>0.9212</td>
</tr>
<tr>
<td></td>
<td>CSF</td>
<td>0.8240</td>
<td>0.8692</td>
<td>0.8460</td>
<td>0.8610</td>
<td>0.8964</td>
<td>0.9149</td>
</tr>
<tr>
<td></td>
<td>WM</td>
<td>0.8447</td>
<td>0.9151</td>
<td>0.8624</td>
<td>0.9180</td>
<td>0.9190</td>
<td>0.935</td>
</tr>
<tr>
<td>9%</td>
<td>GM</td>
<td>0.7041</td>
<td>0.7941</td>
<td>0.6748</td>
<td>0.6775</td>
<td>0.7978</td>
<td>0.8927</td>
</tr>
<tr>
<td></td>
<td>CSF</td>
<td>0.6629</td>
<td>0.7852</td>
<td>0.7598</td>
<td>0.7606</td>
<td>0.7886</td>
<td>0.8848</td>
</tr>
<tr>
<td></td>
<td>WM</td>
<td>0.6266</td>
<td>0.6311</td>
<td>0.7801</td>
<td>0.7898</td>
<td>0.7945</td>
<td>0.8751</td>
</tr>
</tbody>
</table>

The Segmentation Accuracy SA consequence of the calculations are displayed in Table 1, the Jacquards Co-efficient JC esteems for the calculations is exhibited in Tables 1 and 2 demonstrates the aftereffect of SA for tumor pictures. The outcomes demonstrate that the rough sets and delicate sets based SFRCM calculations perform exceptionally well even within the sight of commotion. KM despite the fact that set aside little opportunity to evaluate, it can't work for pixels exhibit in the limit district (in discern-capable) and consequently, builds grouping botches lessening the SA and JC esteems. FCM can deal with dubiousness by characterizing level of participation however can't group properly the incoherent cases.

Hence, the SA and JC estimations of one tissue increment and alternate lessen. And produced results of shown in figure 7, 8. The rough sets can productively deal with the muddled pixels in bunching by giving a limit area which goes about as a cradle zone. The pixels in the cushion zone are given another opportunity before allocating to the group, decreasing the bunching botches with great SA and JC comes about as appeared in Tables 1–2 but time complexity is high. Proposed approach gives better time complexity results, because of less iterations present in dist-max calculation. Hence, with fewer calculations, the rough locales of cerebrum MR pictures are characterized with delicate sets keeping up the precision of division. Because of these favorable circumstances, delicate sets turned out to be better option for harsh sets for characterizing rough districts of the cerebrum picture.

7. Conclusion
Enhanced and Explored Intuitionistic Rough based Fuzzy C-means Approach for weighted brain image segmentation based on dist-max is proposed in this paper. This proposed approach selects centroid based on distance with maximum initialization procedure. To prove practically of our proposed approach tested on real time brain image data set. And also compare this approach into different clustering approaches traditionally proposed; it has proven real time brain MRI image segmentation, our approach give better and robust clustering results with respect to different types of tissues respectively. The whole experimental results show proposed approach is more robust to noise and faster with comparison of less iteration in cluster selection to compare with other segmentation algorithms. Further extension of our proposed is pattern extraction for pixel notation in segmentation of image into different regions. Increase image intensity with respect to spatial data processed in image segmentation and compute smoothness of image histogram and histon.

References