A Study on Effect of Pollutants on Land and River Due to Discharge of Paper Packaging Factory Waste Water in Erode District by Using Gis

T.Subramani1*, V.V.Balaji2

1* Managing Director, Priyanka Associates (Civil Engineers and Valuers), Salem, TamilNadu, India.
2 Hr.Sec.Vocational Teacher, GHSS, Mettur Dam, Salem Dist.,, TamilNadu, India.
*Corresponding author E-mail: tsmcivil2007@gmail.com

Abstract

In our project mentioned and studied approximately the types of units involved inside the paper packaging manufacturing facility with exclusive tactics are concerned in it and the work done in these procedures. Acquire the wastewater and the sources of wastewater in exceptional procedures and also the effect of this waste count number on the ecosystem. Those industries discharge wastewater that is characterized with the aid of excessive chemical detail element demand, organic element demand, vitamins, and natural and inorganic contents. Such wastewaters, if discharged also has no longer correct treatment, seriously dirty receiving water our bodies and disrupts complete scheme. Moreover, the Indian authorities has imposed terribly strict regulations and rules for effluent discharge to save ecology. As a result, suitable remedies ways are required therefore on meet the effluent discharge standards

Keywords: Pollutants, land and river, paper packaging, waste water, Erode district, GIS.

1. Introduction

Water (H₂O) is formed by way of the catalytic advent of 2molecules of hydrogen and one molecule of oxygen and earth and no other planetary our bodies has any hint of water even as theories on beginning of water would possibly continue, its essentiality for all life paperwork as known on the planet cannot be wondered. It’s expected that 90% water resources inside the country are polluted with untreated industries, home water insecticides and fertilizers. The person of wastewater includes physical, chemical, and organic characteristics that rely upon the water usage inside the network, the industrial and industrial contributions, climate, and infiltration/inflow. The remaining 0.06 % is fabric dissolved or suspended inside the water.

1.1. Objectives

- To list out the potential toxic elements and organic pollutants in domestic, commercial, and urban run-off wastewater.
- Study about the processes in paper packaging industry and also conventional waste water treatment methods.
- With the use of advanced software GIS compare the parameters in effluent and its values for various regions.

2. Methodology

Fig.1 shows the methodology of this study.

3. Study Area For Erode District

Erode is a city in the South Indian state of Tamil Nadu. Erode is seventh largest city in TamilNadu.

3.1. Geography
Erode is placed at 11.21°N 77.44°E. There aren’t any outstanding mineral assets handy in and spherical the town. Black dirt soil is determined in additives of Erode. The other kind of soil within the city is inside the fundamental gravelly, stony and sandy of the red selection. Lime stone is observed in abundance within the shape of modules, streaks and large beds of grey and white color placed down branded with igneous rocks within the river beds.

4. Paper Packaging Industry

Industrials can integrate both manufacturing processes.

4.1. Paper Package Manufacture

4.1.1. Unbleached Pulp Manufacturing Processes

Many processes are wont to destroy the wood and isolate the polyose from the lignin: An action, enabling pulp meant for fine paper production (printing, writing). lignin becomes soft below the effect of heat or chemicals:

4.2. Bleaching

For several applications uncolored pulp can’t be used (colour, impermeableness, etc.).

4.3. Wastewater

• Washing and draining.
• Preparation of wood.
• Bleaching.

4.4. Paper and Cardboard Manufacture

Manufacture: paper is fabricated from new pulp,
• Maximum contemporary machines vicinity unit equipped with two internal circuits:
• A secondary circuit that gets water from suction, urgent and remotion tanks and into that fibers recuperation instrumentality is hooked up (pulp trap).

5. Water Use and Treatment Methods

Fig.2 shows the paper packaging process.

6. Application of GIS Software

A geographic system (GIS) might be a computer based more used for mapping and analyzing geographic improvement that exist, and changes, on earth. GIS generation integrates common records operations like question and statistical evaluation with the special visualization and geographic evaluation benefits offered with the aid of maps.

6.1. Current Challenges

6.1.1. Representations and Data Sources

The primary products of the providers offer quite a number strategies for evaluation and visualization similarly to the important housekeeping functions of transformation, projection alternate, and resembling. But the trouble of time is honestly extra than a easy difficulty of illustration.

6.2. The Current State of GIS

The authors, for instance, are times of the magnificence male humans, that's a specialization of the greater preferred class humans. In flip humans can be concept of as a part of a hierarchy of growing generality: mammals, vertebrates, animals, and organisms in that order. Specialized lessons inherit all the homes of more widespread classes, and add special homes in their personal. This enormous advantages in the integration of GIS with various types of software program that use the same standards, particularly programs for statistical evaluation.

7. Analysis Results

Fig.3 shows the location of study area.

Table 2 shows the physic-chemical parameters of paper mill effluents.
Table 2: Physico-chemical parameters of paper mill effluents

<table>
<thead>
<tr>
<th>S.NO</th>
<th>PHYSICO - CHEMICAL PARAMETER</th>
<th>METHOD APPLIED FOR LABORATORY ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total suspended solids (TSS)</td>
<td>Gravimetric, residue drying 100°C</td>
</tr>
<tr>
<td>2</td>
<td>Total dissolved solids (TDS)</td>
<td>Gravimetric, evaporation (100°C)</td>
</tr>
<tr>
<td>3</td>
<td>Chemical oxygen demand (COD)</td>
<td>Potassium dichromate closed reflux method</td>
</tr>
<tr>
<td>4</td>
<td>Biochemical oxygen demand (BOD)</td>
<td>5 days incubation at 200°C</td>
</tr>
<tr>
<td>5</td>
<td>Colour</td>
<td>Spectrophotometer</td>
</tr>
</tbody>
</table>

Table 3 shows the some characteristics of paper industry effluents.

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>P</th>
<th>TSS</th>
<th>TDS</th>
<th>COD</th>
<th>BOD</th>
<th>EC</th>
<th>TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kodanalli</td>
<td>7.45</td>
<td>460</td>
<td>1320</td>
<td>4357</td>
<td>306</td>
<td>1198</td>
<td>1840</td>
</tr>
<tr>
<td>2</td>
<td>Yadagopatti</td>
<td>7.21</td>
<td>240</td>
<td>1120</td>
<td>3083</td>
<td>368</td>
<td>2013</td>
<td>1360</td>
</tr>
<tr>
<td>3</td>
<td>Pender</td>
<td>7.22</td>
<td>200</td>
<td>1000</td>
<td>1756</td>
<td>488</td>
<td>1719</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>Ered</td>
<td>8.09</td>
<td>80</td>
<td>480</td>
<td>647</td>
<td>366</td>
<td>1190</td>
<td>560</td>
</tr>
<tr>
<td>5</td>
<td>Pallapalle</td>
<td>8.04</td>
<td>480</td>
<td>756</td>
<td>1532</td>
<td>366</td>
<td>1098</td>
<td>7180</td>
</tr>
<tr>
<td>6</td>
<td>Perumal</td>
<td>7.8</td>
<td>340</td>
<td>460</td>
<td>1123</td>
<td>366</td>
<td>2603</td>
<td>1180</td>
</tr>
<tr>
<td>7</td>
<td>Siddhambadi</td>
<td>8.10</td>
<td>150</td>
<td>160</td>
<td>236</td>
<td>408</td>
<td>2159</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>Elettur</td>
<td>7.67</td>
<td>80</td>
<td>1500</td>
<td>598</td>
<td>468</td>
<td>2232</td>
<td>1560</td>
</tr>
<tr>
<td>9</td>
<td>Tala Ram</td>
<td>8.63</td>
<td>60</td>
<td>2100</td>
<td>766</td>
<td>420</td>
<td>1072</td>
<td>2100</td>
</tr>
<tr>
<td>10</td>
<td>Thinghal</td>
<td>7.63</td>
<td>150</td>
<td>1350</td>
<td>920</td>
<td>325</td>
<td>1408</td>
<td>3200</td>
</tr>
<tr>
<td>11</td>
<td>Anthu</td>
<td>8.65</td>
<td>320</td>
<td>1250</td>
<td>1355</td>
<td>450</td>
<td>1524</td>
<td>650</td>
</tr>
<tr>
<td>12</td>
<td>Lakkampatti</td>
<td>7.69</td>
<td>150</td>
<td>1450</td>
<td>1245</td>
<td>310</td>
<td>1520</td>
<td>450</td>
</tr>
<tr>
<td>13</td>
<td>Hossyanar</td>
<td>7.71</td>
<td>310</td>
<td>960</td>
<td>1350</td>
<td>308</td>
<td>1320</td>
<td>962</td>
</tr>
<tr>
<td>14</td>
<td>Burgar</td>
<td>8.73</td>
<td>350</td>
<td>620</td>
<td>3842</td>
<td>410</td>
<td>1120</td>
<td>1120</td>
</tr>
<tr>
<td>15</td>
<td>Adivayar</td>
<td>7.5</td>
<td>221</td>
<td>320</td>
<td>2566</td>
<td>340</td>
<td>1452</td>
<td>1240</td>
</tr>
<tr>
<td>16</td>
<td>Gondri</td>
<td>8.02</td>
<td>235</td>
<td>450</td>
<td>1236</td>
<td>450</td>
<td>1254</td>
<td>1142</td>
</tr>
</tbody>
</table>

Fig. 4 shows the drainage network.

7.1. Parameters

7.1.1. pH

The hydrogen-ion concentration is a totally important parameter to test the usual of effluent discharge from the plant of acidity and alkaline. The pH of the inflowing become measured to be 8.6-nine.15 that is alkaline as reported7 in comparison to seven.5-7.eight with dealt with effluent. Low rate of pH is depends on metabolism of fungus, small plant life and sports of microorganism population.

7.1.2. Colour

Fig.5 shows the pH value in study area.

Fig.6 shows the TDS value in study area.

Fig.7 shows the TSS value in study area.

Fig.8 shows the BOD value in study area.

Fig.9 shows the COD value in study area.
8. Conclusion

This research work devise a method reduces the estimation of treatment. The house owners themselves think of applying a similar within the trade, ultimately minimize the losses to be developed to the ecosystem that is useful in protective the atmosphere. This analysis work proposes of using fibre as a media the most affordable and pronto out there material during a fastened film fastened bed reactor.

References


Fig.9: COD value in study area

Fig.10 shows the EC value in study area.

Fig.10: EC value in study area

Fig.11 shows the graph of pH tolerance limit.

Fig.11: Graph of pH Tolerance limit

Fig.12 shows the TSS tolerance limit.

Fig.12: Graph of TSS Tolerance limit

Fig.12: Graph of TSS Tolerance limit


