3D-Forming and Autodesk Autocad at the Initial Stage of Engineering Training of Specialists in Technical Areas

V.V. Telegin*, I.V. Telegin *, A.S. Stepanov

* Lipetsk state technical University, Russia

Abstract

Descriptive geometry is one of the disciplines that for a long time is the basis for training engineers of various specializations. However, with the advent of modern computer 3D technologies, the place and role in engineering of many traditional disciplines requires rethinking. The article is devoted to the integration of methods of descriptive geometry into the educational process of preparing students of higher educational institutions.

Keywords: descriptive geometry, engineering graphics, computer modeling, 3D-model, drawing.

1. Introduction

For many decades, one of the main disciplines of the system of training the highest technical qualifications (engineers of mechanics, engineers of builders and other specialists) is descriptive geometry. It was created more than two hundred years ago [1, 2] by the French scientist Gaspar Monge, "descriptive geometry was cultivated in the technical school as a science, without which it is inconceivable the formation of an engineer" [1]. As a rule, the "birth" of any product, practically regardless of the field of application [3 - 7], is associated with three stages: design and conceptualization of the idea in the engineer's mind, creation and processing of documentation, production of the product itself on the basis of this documentation. Obviously, these stages are not only closely interrelated, but they do not exhaust all the nuances of preparing and ensuring the production of the finished product. If the product is a construction, in reality a three-dimensional, then the second stage necessarily includes the presentation of information about this design in the form convenient for processing it. Currently, this is a three-dimensional computer model [5, 8], the necessary calculations and drawing. Drawing, according to Monge, is the language of technology, and the grammar of this language is descriptive geometry [1].

The technology of creating 3D models of three-dimensional objects and the development of design documentation on their basis became available to students and teachers of universities in the early years of the 21st century. Currently, the design process carried out by the vast majority of enterprises is based on the following scheme: the creation of a 3D model of the product, the execution on its basis of calculations (kinematic, dynamic, strength and others), the development of the designed product on their basis and, in a semi-automatic mode, the development drawings and other documentation necessary for the subsequent organization of his (product) production. At first glance, with such an approach, the knowledge of many disciplines studied in higher education institutions is not necessary. The authors may exaggerate, but among such disciplines, mathematics - numbers can be multiplied on a calculator, and, for example, solving an equation in Maple, MatLAB or MatchCAD, mechanics - problems in the theory of mechanisms and machines, machine parts, material resistance are easily solved in within the framework of many 3D modeling systems: Autodesk Inventor Professional, Autodesk Simulation, SolidWorks, descriptive geometry - for example, the line of intersection of geometric objects can be constructed without difficulty in any of the three-dimensional modeling systems. However, the essence of higher education, according to the authors, is not the acquisition of a set of skills and the ability to use them mechanically, but the formation of an engineer's special structure of thinking and knowledge base in a whole range of sciences that allow him to creatively approach the task assigned to him, just copy, but get the best possible solution.

2. Place of Discipline “Descriptive Geometry” in the Educational Process

This article is a concretization of the material associated with the graphic preparation of students in discipline descriptive geometry at the Lipetsk State Technical University (LSTU), which was described in [9, 10]. As noted above, descriptive geometry, being one of the basic disciplines that form the ability of an engineer to work with three-dimensional geometric objects, both mentally and on a plane, cannot and should not distance himself from modern computer 3D technologies. For several years, the authors have been developing and testing a methodology for preparing students, which the framework of the standard course of descriptive geometry:

• to teach students practical skills in graphical works using the Autodesk AutoCAD program [9];

• to form basic concepts about methods and tasks of discipline descriptive geometry;

• to master the practical skills of applying computer 3D modeling methods for solving typical tasks of descriptive geometry.

It is three tasks, different in its nature, content and laboriousness. Their decision, with a minimum of time costs (1 hour of lectures
and 1 or 2 hours of practice per week for 17 weeks of the first semester), requires the availability of comprehensive guidelines and the availability of appropriate software. Students are trained on the basis of Autodesk software products [9], in this case Autodesk AutoCAD.

3. The Structure of Course Descriptive Geometry

Conditionally, the content of the course can be divided into three parts: work in Autodesk AutoCAD, study of theoretical and practical methods of descriptive geometry, acquisition of 3D modeling methods for solving practical problems of descriptive geometry.

The first and second parts of the course in the first six weeks of training are combined in time. During this period, practical classes of 80 percent are devoted to the development of the AutoCAD system, the theoretical material of the course is studied during lectures, in part, in practical classes and independently. The way of control at this stage of training: the execution of test tasks in testing systems. There is one self-dependent work. The topic: projection methods, drawings of a point and a line segment. The practical result of mastering the first part of the discipline is the fulfillment of the 0th graphic work. Its content is given in the article [9]. This work is not related to the subject of descriptive geometry. Its purpose is to acquire the skills of performing flat drawings in the AutoCAD system. The practical component of the second part of the course, and the third part of it is combined in time. Approximately this stage of preparation of students begins with the 7th week of training and lasts for 10 weeks before the end of the semester.

4. Content of Course Descriptive Geometry

Individual task №1. The construction of the line of intersection of two planes of general position, given by triangles. Determination of the angles of inclination of these planes to the planes of projections. Definition of visibility. Solution methods: traditional (the method of cutting planes) and 3D modeling in Autodesk AutoCAD. The image of the 3D model is built in the model space. When building, 3D editing commands are used. The results of the work are shown in Picture 1.

Individual task №2. Construction of the line of intersection of polyhedral. The construction of the flat patterns, the production of the physical model of the projected body, is glued from the paper on the basis of the flat pattern. Methods of solution: traditional (descriptive geometry) and 3D-modeling. The results of the work are shown in Picture 2.

Individual task № 3. Construction of a line of intersection of surfaces of rotation. Task № 3 is similar to task №2. Difference: the construction of the flat pattern is carried out using the methods of descriptive geometry. The results of the work are shown in Picture 3.

5. Conclusion

Any rather complicated construction, which is the object of the professional activity of an engineer, this is most often the result of performing boolean operations on three-dimensional bodies, which include the simplest (point, straight, plane) and more complex geometric images-the curved line, the surface and the body.
Picture 4. Representation of a complex object: a drawing (a), a 3D model (b).

Picture 4 shows the front section of the product and its three-dimensional model. Probably one of the main tasks of descriptive geometry is to learn how to see in the image not a set of lines, but the result of combining three cylindrical surfaces with two conical surfaces and one torus with the subsequent subtraction of the surfaces of two conical, one cylindrical (hole) and screw (thread). The ability to work with three-dimensional structures in this way is one of the most important features that distinguish a professional engineer from the corresponding theoretical training.

References