Rectenna design for electromagnetic energy harvesting and wireless power transfer

V. K. Singh 1*, N. K. Singh 1, Rahul Kumar 1, Arun Yadav 1, Gyoo-Soo Chae 2, Ashis Sharma 3, Akash Kumar Bhoi 4

1 Dept. of Electrical Engineering, SR Group of Institutions Jhansi, U.P. India
2 Division of Information and Communication, Baekseok University, Cheonan, South Korea
3 Sikkim Manipal Institute of Technology (SMIT), Sikkim Manipal University, India
4 Department of Electrical & Electronics Engineering, Sikkim Manipal Institute of Technology (SMIT), Sikkim Manipal University, India

*Corresponding author E-mail: singhvinod34@gmail.com

Abstract

Under this article an antenna with rectifier circuit is intended and simulated to energize the wireless feeler systems at resonant frequency 5.3838 GHz. The antenna substrate is prepared with textile material. The dielectric constant of material is 1.7. The rectenna circuit has been simulated on the Jeans substance and examined for power level -5dBm. The presented antenna has a gain of 4.861 dBi. The anticipated antenna is designed with CST software. The value of L and C are calculated from MATLAB programming.

Keywords: Rectenna Circuit; CST Software; Pspice Software; Wireless Power Transmission; Antenna.

1. Introduction

Over the past several years, with the increase of technology various technology related to wireless systems have been developed and working in the region. The vital examples of wireless system are cellular mobile radio and Wi-Fi systems which are commonly available everywhere[1-4]. Most capable techniques to gather the wireless energy is to utilize a rectenna which is a mixture of a rectifier and an antenna. The antenna received the wireless energy further connected to rectifying diode in which filters are connected for removing the ripples. The rectifying diode converts the collected wireless RF into DC. The low-pass filter will used for obstruct the harmonics caused by the diode in order to attain high energy conversion efficiency, which is the most vital constraint of such a gadget [5-7]. The block diagram of rectenna circuit is given in figure 1. There are two genuine advantages for rectenna such as the life span of the rectenna is almost limitless and it does not need substitution. Secondly it is green for the surroundings.

The designed antenna obtains the RF power at 5.3838 GHz resonant frequency which is used for rectification with the help of matching circuit. The matching circuit consists of inductors & capacitors which values are calculated with the MATLAB programming.

$$r = \frac{87.94}{fr\sqrt{\varepsilon_r}}$$

Fig. 1: General Diagram of Rectenna Circuit.

2. Rectenna designs

2.1. Wearable antenna

The simulation of textile antenna was intended in CST software. Table.1 shows the various dimensions of presented textile antenna.
2.2. Circuit for rectification

An impedance matching between Schottky diode and antenna ensures the development of rectification circuit which uses first order low pass filter with the help of Pspice software. The Schottky diode’s impedance depends on radio frequency power which has threshold voltage of 150 mV.

3. Result and discussion

The reflection coefficient with frequency plot is achieved from CST software which shows minimum return loss. The 3-D plot of receiver antenna is given below in figure 3 and 4 which shows the directivity of 4.861 dBi. Figure 5 shows rectifying circuit. For the receiver antenna is given below in figure 3 and 4 which shows the minimum return loss. The 3-D radiation pattern showing directivity of proposed receiver antenna is given below in figure 3 and 4 which shows the minimum return loss.

3.1. Table 1: Antenna Parameters

<table>
<thead>
<tr>
<th>Antenna Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Thickness(h)</td>
<td>1</td>
</tr>
<tr>
<td>Relative Permittivity(εr)</td>
<td>1.7</td>
</tr>
<tr>
<td>Pentagon diameter[mm]</td>
<td>3</td>
</tr>
<tr>
<td>Center circle[mm]</td>
<td>5</td>
</tr>
<tr>
<td>Rectangle width[mm]</td>
<td>10</td>
</tr>
<tr>
<td>Rectangle length[mm]</td>
<td>30</td>
</tr>
<tr>
<td>Vertical rectangle[mm]</td>
<td>16x6</td>
</tr>
<tr>
<td>Ground Area</td>
<td>6x10</td>
</tr>
</tbody>
</table>

3.2. Figure 6 and Figure 7 shows the graph of output current and output voltage at load.

4. Conclusion

An energy harvesting system efficient in converting a low energy radio wave into a working DC voltage has been offered, with superior conversion efficiency at very low occurrence power levels, analogous to those available at a span of several tens of meters in an urban area. The rectenna circuit is intended to receive the RF power at a resonant frequency of 5.3838 GHz. The received radio wave power is further transformed into DC power using shokkty diode & matching circuit.

References

