Reduction of Data Transmission Time Delay with Object Detection in Underwater Acoustic Sensor Network

M. Pragathi 1, R. Kumar 2

1Embedded System Technology, 2Electronic and Communication Engineering
1,2SRM Institute of Science and Technology, Kattankulathur, Chennai, India
*Corresponding Author Email: praga730@gmail.com

Abstract

Underwater acoustic sensor networks plays vital role in many applications such as monitoring underwater environment, location and object detection etc. In environment monitoring, the sensor nodes monitors the unwanted obstacles and transmits the information about the obstacles to Base Station(BS). The major problem is when sending data from two or more number of sensor nodes at same time the time delay in data transmission will be increased. In this project, to overcome the problem of end to end delay, mobile data collector is employed with waterproof ultrasonic sensor nodes in underwater acoustic Sensor network.

Keywords: Arduino UNO, Node MCU, Zigbee transceiver, water proof ultrasonic sensor, Arduino software; Iot based cloud network.

1. Introduction

Underwater acoustic communication is a technique used to send and receive data from underwater environment. When data are send through under water communication part is very difficult when compared with terrestrial communication. Due to the some properties in underwater environments and acoustic communications, underwater acoustic sensor network consumes more energy when transmission occur through underwater condition. The transmitting power is based on the distance between the communication nodes and the amount of information that are transmitted between them. The receiving power is based on number of data bits it receives. As a result, if the power consumption can be reduced, the lifetime of the network can be increased. By locating the sensor node in shorter distance the lifetime of the sensor network will be increased. For transmitting data the initial positions of the sensor nodes Sensor Node (SN) are determined when the transmission is occur. The distance between some SNs may be too long so that the communication between them will be lost and power consumption will be high, it results in lack of network lifetime in sensor network. To increase the network lifetime, Relay nodes (RN) have to be added to the network to reduce the distance between SNs and base station, this process results in increasing network life timing.

Acoustic Sensor Networks (UW-ASN) has a several number of sensors nodes that sense over a long area of sensor network which can adjust to the qualities of the sea condition. Acoustic correspondences are the normal physical layer innovation in underwater systems. The radio waves engender in ocean water at long distance in low frequencies (30-300 Hz), for high transmission the sensor network requires apparatus like high frequency sensor nodes.

The approach of sea base observing is to convey that submerged sensors record information from underwater and afterward recoup the instruments. The protest identifying sensors like ultrasonic sensors conveys high recurrence ultrasonic sounds that ultra sounds which is utilized as a part of numerous courses, for

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The figure 1 represents the relay node placement and how the data is transmitted through the sensor node’s to base station (BS). UASN has several sensor nodes and relay nodes, whereas Sensor node (SN), Relay node (RN) and Base station (BS) is placed under cylindrical water tub with depth of ‘W’ and length of ‘N’ and is placed in the center of the water body. The relay node is placed in between the two sensor nodes, it act as an intermediate node which is used to transmit data from sensor node to base station. While transmitting the data transmission time delay occurs when number of nodes increased in sensor network. For reducing the time delay mobile data collector is employed with sensor network.

Algorithm 1: Measuring distance in ultrasonic sensor

Step 1: Set Arduino pin tied to Echo pin and trigger pin on the ultrasonic sensor.
Step 2: Defining maximum distance to ping for (in centimeters).
Step 3: Set up the Open serial monitor at 9600 baud to see ping results.
Step 4: Set time delay wait for 10us between pings (about 20 pings/sec). 29ms should be the shortest delay between pings.
Step 5: Get ping time in microseconds (us).
Step 6: Convert ping time to distance in cm and print result.
Step 7: Run the code.

Algorithm 2: Mobile data collector

Step 1: Create API key connect with wifi connection.
Step 2: Receive data from sensor node.
Step 3: Read the data from sensor node
Step 4: Sending Data to Thinkspeak Channel
Step 5: Run the code and displays the distance in waveform.

3. Design and Implementation

In underwater environment, UASN is useful to detect many unwanted obstacles which is present in under water environment.

A. Surface level testing in mobile data collector

For testing the mobile data collector in surface level the sensor nodes and mobile data collector is connected with power supply. Both sensor are placed in particular distance. Each sensor node contains one ultrasonic sensor node, Arduino UNO and Zigbee transceiver. Whereas the mobile data collector contains node MCU and Zigbee transceiver.
Figure 3: Surface level testing in mobile data collector

Figure 3 represents the surface level testing in mobile data collector. The data are measured through the transducer which is connected with waterproof ultrasonic sensor and the measured values are analyzed and send through zigbee (HC-12) transceiver. The transducer can measure the distance by sending high frequency sound pulse, the high frequency sound pulse hit the particular obstacles and return back to the transducer itself, the transmitted data are collected by a mobile data collector by zigbee transceiver and send to base station in cloud network.

Figure 4: Distance measurement in sensor node 1

Figure 4 represents that data from mobile data collector is viewed through IoT cloud network, the distance (49 cm) of object and time of data transmission of sensor node 1 is viewed in this IoT network.

Figure 5: Distance measurement in sensor node 2

Figure 5 represents that data from mobile data collector is viewed through IoT cloud network, the distance (51 cm) of object and time of data transmission of sensor node 1 is viewed in this IoT network.

In surface level measuring, the obstacle is placed in the particular distance, the high frequency pulses is generated by the transducer. Practically, the distance of the obstacle can be measured by measure the distance between the transducer and the obstacle. The data are send in IoT based cloud network and the values are simulated in a particular channels. The measured values are tabulated with time delays when the data are received in the base station is shown in table 1.

B. Underwater testing in mobile data collector

In underwater testing obstacles are placed in water tub with some particular distance, node 1 transducer is placed in left side of water tub and node 2 transducer is placed in right side of the water tub. The two sensors can measure the data from different location when 2 obstacle are detected, both sensor nodes send different data values, the values are tabulated in IoT cloud network in simulated wave form. The figure represents the object detecting operation occurs in the underwater environment.

Figure 6: Underwater testing in mobile data collector

The figure 6 represents underwater testing in mobile data collector. Both transducer from sensor node 1 and sensor node 2 is submerged into the water surface. For each sensor one obstacle is placed in opposite direction in particular distance. The high frequency sound signal from the transducer hits an object and return back to the transducer itself. By knowing how long the signal transmitted and received, the distance of the object will be measured respectively.
Figure 7 represents the object distance measurement in underwater. The data from mobile data collector is received by base station (in IoT cloud network) and displays about distance and time of the object which is present inside the water. The figure 9 shows the time and distance (49cm) of the object in sensor node 1.

Figure 8 shows the data like time and distance (51cm) of the object in sensor node. While analyzing the data from both sensor node the time delay for data transmission is reduced.

4. Result Analysis

In underwater acoustic sensor network, the mobile data collector collects the data from each sensor node from different location and send through cloud network. The data from the mobile data collector is simulated in the field sensor node 1 and sensor node 2 in IoT cloud network. The measured values from both the sensor node is tabulated. When compared with surface level measurement and underwater measurement the delay is reduced and the communication is improved.

From table 1, both surface level and underwater testing in mobile data collector is analyzed, it represents the distance of the object and how much time delay occurs in both the nodes. In under water testing node 1 and node 2 transmitted the data like distance of object which 50 cm in same time delay of 12 micro seconds. In surface level testing node 1 and node 2 transmitted the data like distance of object which is 49cm in same time delay of 10 micro seconds. While analyzing these results the delay is reduced in data transmission when number of sensor node is increased.

5. Conclusion

In underwater acoustic sensor network, the data transmission will more complex and difficult to transmit a data through underwater circumstance. While data transmission the time delay is increased when the several number of nodes transmit the same data to one base station from a long distance. In this paper, to overcome the problem of end to end delay, mobile data collector is employed with ultrasonic sensor nodes in underwater acoustic sensor network. Mobile data collector the data from different location with minimum delay.

Table 1: Surface level and underwater testing in mobile data collector

<table>
<thead>
<tr>
<th>s. No</th>
<th>Node 1</th>
<th>Node 2</th>
<th>Time delay in surface level(for both node 1 and node 2 in micro sec)</th>
<th>Underwater testing in mobile data collector</th>
<th>Time delay in underwater(for both node 1 and node 2 in micro sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>48</td>
<td>10</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>49</td>
<td>16</td>
<td>49</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50</td>
<td>11</td>
<td>51</td>
<td>15</td>
</tr>
</tbody>
</table>

References