Mat lab/simulink based fault analysis of pv grid with intelligent fuzzy logic control mppt

Neeraj Priyadarshi 1 *, Amarjeet Kr. Sharma 1, Akash Kr. Bhoi 2, S.N. Ahmad 1, Farooque Azam 1, S. Priyam 1

1 Millia Institute of Technology, Purnea 854301, India
2 Dept. of Electrical and Electronics Engineering, Sikkim Manipal Institute of Technology, SMU, Sikkim, INDIA-7371363
*Corresponding author E-mail: neerajrjd@gmail.com

Abstract

This paper mainly presents the fault analysis of Photovoltaic (PV) grid power system. The fuzzy logic controller (FLC) based intelligent maximum power point tracking (MPPT) algorithm has been employed in this work. Moreover, the hysteresis controller has been implemented for inverter control. Simulation results based on MATLAB/SIMULINK justify the effectiveness of the proposed PV power system under different fault operating conditions.

Keyword: FLC; Hysteresis Controller; MATLAB; PV

1. Introduction

Because of continuous depletion of fossil fuels and energy security challenges, renewable energy sources are playing important role for production of electrical power. Photovoltaic (PV), wind energy, fuel cell, tidal energy, geothermal energy etc are the main renewable energy concern [1]-[3]. Compared to other renewable sources, the PV system is the most acceptable technology for electricity generation. As it has no moving parts and produce green and pollution free environment. However, because of high installation cost and low tracked efficiency, the maximum power point tracking (MPPT) technology has been added with PV power system [4]-[6]. Various MPPT algorithms have been used to improve the conversion efficiency of the PV module [7]. In view of this work fuzzy logic controller (FLC) based MPPT controller has been used to track the optimal power from PV modules [8]. Also, hysteresis controller for inverter current control strategy has been also employed [9]-[10]. The different faults L-G, L-L, LLL, LLG, and LLLG have been realized on grid side using MATLAB/SIMULINK environment.

1.1. Proposed structure of PV grid

State space model based zeta converter conducting in continuous mode is presented in this regard. Since zeta converter consists of two capacitors and two inductors and able to work in step down / up mode is called fourth order chopper which is depicted by Fig 1.2. With regard to the energy it acts as a buck converter, on the other hand with regard to the output it acts as a boost converter. The power circuit consists of capacitor and inductors as major elements which are employed for amplification and reduction of level of voltage. The complete operation is based on without polarity inversion and it acts as MPPT trackers which provide zero voltage ripple. Comparing to other dc-dc converters, it provides better voltage reg-
ulation, high tracked efficiency and reduction of stress level voltage. The main objective of maximum power point method is providing optimal PV power extraction. For maximizing the efficiency of buck-boost converter, the converters can be employed in continual conduction state. The supply voltage is same as system. Output \(V_S = V_{CS} \), in the purpose of dynamicity. \(R_S \) and \(R_L \) represent the internal resistance of source and load respectively. The following assumptions are made for analysis:

a) The converter operates in continuous inductor current mode.

b) Switching devices should be real.

c) DC voltage line frequency ripple is negligible

\[
\begin{align*}
\frac{dV}{dt} &= \frac{1}{L} \left(V_S - V_C \right) \\
\frac{dC}{dt} &= \frac{1}{C} \left(I_l - I \right)
\end{align*}
\]

Zeta converter is operating in two modes. In first, mode switch is opened and diode gets forward biased. The \(L_2 \) energy stored can be transferred to \(R_L \). Also, when switch is closed, the diode gets reverse biased and \(L \) and \(L_1 \) currents are flowing through.

Equating average voltage across inductor,

\[
DV_S = (1 - D) V_o \\
\Rightarrow \frac{V_S}{V_o} = \frac{D}{1 - D} \quad (1)
\]

A. state space model of Zeta buck boost converter

Considering current is flowing through inductor \(I_l \) and voltage across capacitor \(V_C \) as a state variable. The average state space model for current fed zeta converter presented in Fig 1.3 is expressed as:

\[
\begin{bmatrix}
\frac{dV_C}{dt} \\
\frac{dI_l}{dt} \\
\frac{dV_s}{dt}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{RC} & \frac{1}{C} & 0 \\
0 & 0 & 0 \\
\frac{1}{L} & 0 & \frac{1}{C}
\end{bmatrix}
\begin{bmatrix}
V_C \\
I_l \\
V_s
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
\frac{1}{R}
\end{bmatrix} I_o
\]

\(V_S = V_{CS} \)

\[
\tilde{V}_S = \tilde{V}_{CS}
\]

1.3. Proposed adaptive fuzzy logic controller based mppt

Fig 1.4 presents the overall block diagram portrayed of the FLC controller which consists of fuzzification, rule base and defuzzification as the major components. PV voltage and current are sensed which acts as a crisp value to the fuzzification block. The fuzzification converts crisp value to fuzzy value. Inference rule base have been employed to take the fuzzy decisions. These rules are based on IF/THEN basis which comprises mandani max-min composition. The fuzzy parameters can be converted into numerical value using defuzzification method in which centroid method is employed. The FLC controller using MATLAB can be constructed and presented by Fig 1.5.

\[
\text{Fig. 2: Circuit Diagram of Zeta Converter.}
\]

\[
\text{Fig. 3: Equivalent Circuit of Current Fed Zeta Converter.}
\]

Similarly, the small signal dynamic model is

\[
\frac{dV_C}{dt} = \frac{1}{RC} V_C + \frac{1}{C} I_l + \frac{1}{L} V_s + \frac{1}{R} I_o
\]

\[
\text{Fig. 4: PLC Structure.}
\]

\[
\text{Fig. 5: FLC Using Matlab/Simulink.}
\]

1.4. Hysteresis inverter control
In this paper hysteresis based non-linear inverter control has been employed for generation of switching pulses. In this method instantaneous reactive power has been used to produce inverter reference current. The 3-phase voltage and load currents have been transformed using clark’s transformation from a-b-c to α-β-0 frame. Using this transformation, reference current has been generated which acts as an input to hysteresis controller. Fig 1.6 depicts the hysteresis controller using SIMULINK. Generation of the reference current using MATLAB/SIMULINK is explained by Fig 1.7.

![Fig 6: Hysteresis Current Control Using Matlab/Simulink.](image)

![Fig 7: Generation of the Reference Current Using MATLAB/SIMULINK.](image)

2. Response during system fault condition

Several faults have been created on grid side and total harmonic distortion (THD) has been analyzed. Fig 8 describes the MATLAB/Simulink based grid connected power system. The proposed system has been analyzed on 1000 W/m² irradiance with 25°C ambient temperature. Duration of fault is of 0.2 sec. The grid voltage, grid current, inverter current, active and reactive power with inverter current FFT have been studied. The proposed PV power system has been simulated under without and with fault conditions.

![Fig 8: MATLAB/Simulink Based Grid Connected Power System.](image)
The proposed system is studied without fault condition and the corresponding variation in grid voltage, inverter current and grid currents are shown in Fig. 1.9. From FFT analysis the inverter current has total harmonic distortion 0.00%. When a three phase LG fault occurs in the proposed system on grid side the corresponding variation in grid voltage, inverter current and grid currents are shown in Fig. 1.10. The fault is initiated at 0.4 sec, while cleared at 0.6 sec. In case of emergency condition a 3 phase circuit breaker is connected to the grid side to isolate the PV generation system from the distribution system. From FFT analysis the inverter current has total harmonic distortion 0.11%. When a three phase LL fault occurs in the proposed system on grid side the corresponding variation in grid voltage, inverter current and grid currents are shown in Fig. 1.11. The fault is initiated at 0.4 sec, while cleared at 0.6 sec. Under LL fault, the amplitude of grid current is shown in simulated results. From FFT analysis the inverter current has total harmonic distortion 0.05%. When a three phase LLG fault occurs in the proposed system on grid side the corresponding variation in grid voltage, inverter current and grid currents are shown in Fig. 1.12. The fault is initiated at 0.4 sec, while cleared at 0.6 sec. During line to ground fault period, the magnitude of grid current increases as shown in simulated results. From FFT analysis the inverter current has total harmonic distortion 0.10%. When a three phase LLL fault occurs in the proposed system on grid side the corresponding variation in grid voltage, inverter current and grid currents are shown in Fig. 1.13. The fault is initiated at 0.4 sec, while cleared at 0.6 sec. During line to ground fault period, the magnitude of grid current increases as shown in simulated results. From FFT analysis the inverter current has total harmonic distortion 0.03%. During three phase LLLG fault the magnitude of grid current increases as shown in Fig. 1.14. From FFT analysis the inverter current has total harmonic distortion 0.06%. When LLLG Fault occurs in the proposed system on grid side the corresponding variation in grid voltage, inverter current and grid currents are shown in simulated results. The fault is initiated at 0.4 sec, while cleared at 0.6 sec.
Fig. 11: Simulated Responses during LL Fault Condition. Grid Voltage, Grid Current, Inverter Current, Active and Reactive Power Grid Side, FFT Inverter Current
Fig. 12: Simulated Responses during LLG Fault Condition Grid Voltage, Grid Current, Inverter Current, Active and Reactive Power Grid Side, FFT Inverter Current.

Fig. 13: Simulated Responses during LLL Fault Condition Grid Voltage, Grid Current, Inverter Current, Active and Reactive Power Grid Side, FFT Inverter Current.
3. Power circuit structure

PV power circuit model for grid utility was built with protection circuitry and necessary control. Between PV module and three phase inverter, zeta converter works as an interface. The power circuit block diagram has been illustrated in Fig. 1.15.

4. Conclusion

This paper describes the various fault analysis for grid PV power system. Simulated results explain that within 0.2 sec, the proposed power system gains stability at normal frequency. The different fault on grid side has been analyzed for proper design of protection circuit. The MPPT and inverter control strategies for PV power system are working efficiently.

References

