Modelling and implementation of Mppt (Inc) algorithm for Pv water pump applications using Matlab

S.Sivakumar¹*, K.Siddappa Naidu²

¹Research Scholar, Department of EEE, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu-600062, India.
² Professor Emeritus, Department of ECE, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu-600062, India.
*Email: drksnaidu.blr@gmail.com

Abstract

The present dissertation haggle by means of the configuration and enforcement proceeding from a common despite of a capable solar DC water pumping technique with battery backup by means of MATLAB SIMULINK software. The overall system depends on sunlight during daytime. It consists of subsystems like solar or photovoltaic (PV) panel, MPPT, Cuk converter, battery and DC motor and pump. This PV panel subsystem is designed by MATLAB range is 60W module with various irradiation rank and medium temperature. During daytime the clash of source and load, PV panel efficiency gets summarized. In some measures, to draw the zenith power to the ammunition from PV panel, MPPT lives to put into effect in the Cuk converter manipulating by PWM Generator in addition to MPPT hill climbing (HC) algorithm which is also known as incremental conductance (INC). The result validates for MPPT put up essentially increases the system efficiency. The attainment of an overall solar power from the Photovoltaic (PV) water pump proposed system preserve indefinitely codified by a Simulink Paradigm. The MATLAB simulations ratify the DC-DC converter design. This allows a lower cost system. The battery was used as a backup during night time.

Keywords: PV Panel, MPPT, Hill Climbing, CUK converter, MATLAB SIMULINK

1. Introduction

This dissertation proposes simple and efficient solar DC motor pumping system with battery backup. A simple MPPT control technique is applied to clock the zenith power out of solar panel and it gives the switching delay D to the CUK converter by using PWM generator. A detailed design of PV panel, CUK converter, battery, DC motor and MPPT were blown aside by applying MATLAB/SIMULINK.

2. System Description

The proposed system consists of PV panel, CUK converter, MPPT using INC. Battery and DC motor pump as shown in block diagram. A MPPT and PWM generator gives the delay to the CUK converter.

Table 1: Typical characteristics of PV panel with cells connected in series

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break-in Circuit Voltage</td>
<td>VDC</td>
<td>21.6 V (25°C)</td>
</tr>
<tr>
<td>Short-of Circuit Current</td>
<td>ISC</td>
<td>3.0 A</td>
</tr>
<tr>
<td>Form Factor</td>
<td>FF</td>
<td>75%</td>
</tr>
<tr>
<td>Maximum Peak Voltage</td>
<td>Vmp</td>
<td>18 V (25°C)</td>
</tr>
<tr>
<td>Current at Zenith Power</td>
<td>Izp</td>
<td>2.7 A</td>
</tr>
</tbody>
</table>

Table 2: Typical characteristics for each Photovoltaic (PV) cell

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break-in Circuit Voltage</td>
<td>VDC</td>
<td>600 mV(25°C)</td>
</tr>
<tr>
<td>Short-of Circuit Current</td>
<td>ISC</td>
<td>3.0 A</td>
</tr>
<tr>
<td>Form Factor</td>
<td>FF</td>
<td>75%</td>
</tr>
<tr>
<td>Maximum Peak Voltage</td>
<td>Vmp</td>
<td>500 mV (25°C)</td>
</tr>
<tr>
<td>Current at Zenith Power</td>
<td>Izp</td>
<td>2.7 A</td>
</tr>
<tr>
<td>Area</td>
<td>A</td>
<td>100 cm²</td>
</tr>
</tbody>
</table>

Figure1: Basic block diagram of Proposed System
2.2. Modelling of photovoltaic cell

Any photovoltaic cell signifies a basic element for a solar chamber. The photovoltaic synthesizer design comprises on the part oklinking together beyond number of photovoltaic cells in suit and alike combination. Let us assume a photovoltaic cell, the intended may put up to act as a drift source, a semiconductor device containing one p-n junction and a two-current control device. Such intend is recognized as a single diode carved photovoltaic cell.

![Figure 2: Single diode carved photovoltaic cell](image)

An arithmetic values of I-V characteristic that defines the circuit shown in Figure 2 is given by,

\[I_0 = I_L \cdot (1 - I_d + I_{sh}) \]
(1)

Where,

\[I_d = I_0 \cdot \left\{ \exp \left[\frac{q(V_o + R_{se}I_s)}{kT} \right] - 1 \right\} \]
(2)

\[I_{sh} = \frac{(V_o + R_{se}I_s)}{R_{sh}} \]
(3)

i.e.,

\[I_0 = I_L \cdot I_0 \cdot \left\{ \exp \left[\frac{q(V_o + R_{se}I_s)}{kT} \right] - 1 \right\} - \frac{(V_o + R_{se}I_s)}{R_{sh}} \]
(4)

A series resistance \((R_{se}) \) remain inserted which accord an addition-almeticulous shape enclosed by an optimum power point and break-in circuit voltage. Also those shunt resistance \((R_{sh}) \) was connected side by side with the diode to achieve characteristics match. The computation current of the photovoltaic cell is given above.

Where,

- \(V_o \) = Output voltage in volts
- \(I_o \) = Output current (from PV) in ampere
- \(R_{se} \) = Series resistance of the photovoltaic cell in ohms
- \(R_{sh} \) = Shunt resistance of the cell in ohms
- \(q \) = Electron charge (1.60×10^-19C)
- \(I_L \) = Light begun current in ampere
- \(I_d \) = Diode saturation current in ampere
- \(k \) = Boltzmann constant (1.38×10^-23J/K)
- \(T_k \) = Cell temperature in Degrees Kelvin.

2.3. CUK Converter

The kernel of the system signifies a control-mode DC-DC converter, energy which signifies anextensively dissipated between DC power supplies and DC motor drives through the intention about turning unstructured DC data through a restrained DC outflowen the occasion of any summoned energy scope. MPPT algorithm was modelled for the foregoing converter at a miscellaneous levels, controlling the advice voltage to the zenith value of photovoltaic cell and provision of same load for the zenith power consign.

![Figure 3: Circuit design for minimal Cuk converter](image)

For solar water pumping systems, the requirements of good high starting current is to be provided by stepping down the output voltage from a pump motor. Figure 3 gives a circuit design about the minimal Cuk converter. From this equivalent circuit, the input voltage must be greater or smaller than the output voltage. The advice current from the Cuk converter is moratorium, also that may infer a flutter free current in a PV array having relevant efficiency of maximum power. On the other hand, owing to the inductor on the computation stage of the Cuk converter is preserve a good computation current aberration.

2.3.1. Minimal Castration of Cuk Converter

The minimal castration of Cuk converter at ceaseless transition medium is interpreted below. In unfluctuating affirmin, an adequate inductor energy is zero, similarly by means of utilizing Kirchhoff’s voltage law (KVL) in the neighbourhood of an external closed circuit, we get

\[V_{C1} = V_S + V_0 \]
(5)

Conclude the capacitor \((C_1) \) signifies the good adequacy and its energy signifies flutter free smooth if it supply in addition todeliver the good volume of energy from source to outflow. The pioneer provision lives during the source energy is plowed on and switch \((S) \) is rub out. The semiconductor device containing one p-n junction \((D) \) is ahead bigoted, and the capacitor \((C) \) is as accountable. The decency of the circuit can be asunder into the following two vogues.

Vogue 1: During Switch (S) turning ON

The voltage flows away from the capacitor \((C_1) \) attains the semiconductor device containing one p-n junction \((D) \) is reverse-biased and oblique. The capacitor \((C_1) \) carry out its energy to the load by means of the contoured circuit with Switch \((S) \), \(C \), \(R \) and \(L_2 \). The inductors are ample, so surmise that their currents are flutter free.

\[-I_{C1} = I_{L2} \]
(6)

Vogue 2: During Switch (S) turning OFF

A capacitor \((C_1) \) is procuring, loaded by the supply voltage \((V_s) \) through an inductor \((L_1) \). The energy canned in an inductor \((L_2) \) is assigned towards the load by means of the closed circuit formed by \(D \), \(C \), and \(R \).

\[I_{C1} = I_{L1} \]
(7)

Thus, the consecutive correlation is determined. Where: \(D \) the Duty Cycle \((0 < D < 1) \), and \(T_s \) the Switching Period.

\[P_{in} = P_{out} \]
(8)

Imagine that it is an artistic converter, the adequate power supplied by the source need to be foregoing the adequate power absorbed by the load.
\[\frac{V_S}{V_S} = \frac{D}{1-D} \quad (9) \]

Its relationship to the Duty Cycle (D) is:
- If \(0 < D < 0.5 \) the output is shorter than the input.
- If \(D = 0.5 \) the output is identical as the input.
- If \(0.5 < D < 1 \) the output is higher than the input.

2.4 Maximum Power Point Tracking (MPPT)

The efficiency of a photovoltaic cell is quite low. To get the maximum efficiency, a few trials have been made to equivalence the source origin and load properly. One of such method is used is known as Maximum Power Point Tracking (MPPT). This is a dexterity used to achieve the maximum possible power from a assorted source. In photovoltaic systems the I-V curve is non-linear, thus making it converse must be used to power an inaccurate load.

2.4.1 Ways and Means for MPPT

There are many ways and means used for maximum power point tracking, few methods are listed below.
- Perturb and Observe method
- Incremental Conductance method
- Parasitic Capacitance method
- Constant Voltage method
- Constant Current method

Out of the above methods Incremental Conductance method is considered.

2.4.1.1 Incremental conductance method

The Photovoltaic cell array terminal voltage may be varied slightly to the MPPT voltage by bounding the gained and imperceptibly brief period of array conductance.

2.5 DC MOTOR AND PUMP:

Photovoltaic (PV) powered water pumps are virtually similar to any other pumping system. Like wind turbine pumps, PV pumps access intermittent power. When there is adequate sunlight, the system response will be good. The unsophisticated PV water pumping system can be made up of a PV array, boost converter, PMDC motor or DC motor and an inverter. To produce an appropriate physical effects, Motors and Centrifugal Pumps are compelled to perform towards diversity acceleration in a photovoltaic pumping system. From the comparison, it is suggested that PV fed Permanent Magnet Direct Current Motor pumping system is better [11]. A few Photovoltaic (PV) water pumping systems hires a DC motor which can be frankly twined with PV arrays and knock together makes a system which is muchsimple. In association with the different types of DC motors, a permanent magnet DC (PMDC) motor is superior in photovoltaic system by virtue of providing a high starting torque. Figure 5 shows one part of an electrical carve for a PMDC motor. During motor is revolving, it develops Back EMF (E) whose voltage is directly proportional to the angular speed of the rotor.

3. Simulation Results

3.1 Simulation Diagram of Proposed System:

![Figure 5: Overall Simulation diagram of proposed system](image1)

![Figure 6: P-V & I-V diagnostics of Photovoltaic (PV) Cell panel](image2)

![Figure 7: Simulation of Battery Voltage](image3)

3.2 Overall Simulation Output:

![Figure 8: Simulation result of DC water pump system](image4)

4. Conclusion

This dissertation deals with a common but capable Photovoltaic (PV) water pumping system with battery backup. These subsystems each component in a proposed system model counterfeit the system using MATLAB and SIMULINK software. Affectation of the built up model for the proposed system exposes the 60Watts of Photovoltaic cell carve by using the analogous circuit in an average complexity, which provides a admirable counterpart with the appreciable Photovoltaic cell carve. The Incremental Conductance Method (INC) algorithm proves without flexibility but good performance regarding high efficiency brought into comparison to the Perturb and Observe method algorithm under the miscellaneous dark weather condition. Affectation with SIMULINK design with a DC pump
motor who was already established with MATLAB bear out the roles and contributes for MPPT. The resultant exceed the contribution for the MPPT which increases the efficiency of energy production necessarily from PV and also the operation of the proposed PV water pumping system.

References