Large-amplitude dynamic analysis of heterogeneous thin membrane under different loads

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Large amplitude vibration of heterogeneous thin membrane is modeled using the Euler-Bernoulli constitutive law. The obtained nonlinear integro-differential equations are solved using finite difference method. Different results of the problem are illustrated for two different external concentrated loads applied on the middle of the membrane including stepwise and half period sinusoidal forces. The effects of time dependency of the applied loads are investigated. The solution is finally verified and it is concluded that the presented solution can be considered as promising method to obtain large amplitude vibration of thin heterogeneous membrane.

    Keywords: Large Amplitude Vibration; Thin Membrane; Finite Difference Method; Heterogeneity; Sinusoidal Force.


  • References


    1. Hafez Tari, on the parametric large deflection study of Euler-Bernoulli cantilever beams subjected to combined tip point loading, Int. J. Nonlinear Mech., Vol. 49, 2013, 90-99. http://dx.doi.org/10.1016/j.ijnonlinmec.2012.09.004.
    2. Mohammad Maleki, Seyed Ali Madani Tonekaboni, Saeid Abbasbandy, A Homotopy analysis solution to large deformation of beams under static arbotrary distributed load, Appl. Math. Model. 2013, in press.
    3. Shanyuan Zhang, Zhifang Liu, Guoyun Lu, Nonlinear flexural waves in large-deflection beams, Acta Mechanica Solida Sinica, Vol. 22, 2009, 287-294. http://dx.doi.org/10.1016/S0894-9166 (09)60277-9.
    4. D. W. Jung, K. B. Yang, Comparative investigation into membrane, shell and continuum elements for the rigid-plastic finite element analysis of two-dimensional sheet metal forming problems, J. Mater. Process. Technol., Vol. 104, 2000, 185-190.http://dx.doi.org/10.1016/S0924-0136 (00)00551-3.
    5. Wlodzimierz W. Tworzydlo, Analysis of large deformation of membrane shells by the generalized finite difference method, Comput. Struct., 1987, 39-59.
    6. Xiao-Ting He, Liang Cao, Zheng-Ying Li, Xing-Jian Hu, Jun-Yi Sun, Nonlinear large deflection problems of beams with gradient: A biparametric perturbation method, Appl. Math. Comput. Vol. 219, 2013, 7493-7513.http://dx.doi.org/10.1016/j.amc.2013.01.037. F. Xi, F. Liu, Q. M. Li, Large deflection response of an elastic, perfectly plastic cantilever beam subjected to a step load, Int. J. Impact Eng., Vol. 48, 2012, 33-45.http://dx.doi.org/10.1016/j.ijimpeng.2011.05.006. S. P. Pearce, J. R. King, M. J. Holdsworth, Axisymmetric indentation of curved elastic membranes by a convex rigid indenter, Int. J. Nonlinear Mech., Vol. 46, 2011, 1128-1138.http://dx.doi.org/10.1016/j.ijnonlinmec.2011.04.030.
    7. Ben Nadler, David J. Steigmann, Modeling the indentation, penetration and cavitation of elastic membranes, J. Mech. Phys. Solids, Vol. 54, 2006, 2005-2029.http://dx.doi.org/10.1016/j.jmps.2006.04.007.
    8. P. V. M. Rao, Sanjay G. Dhande, Deformation analysis of thin elastic membranes in multiple contact, Adv. Eng. Softw., Vol. 30, 1999, 177-183. http://dx.doi.org/10.1016/S0965-9978 (98)00068-4.
    9. T. J. Chung, Computational Fluid Dynamics, Cambridge University Press, 2002. http://dx.doi.org/10.1017/CBO9780511606205.
    10. Erick Prunchnicki, Nonlinearly elastic membrane model for heterogeneous plates: a formal asymptotic approach by using a new double scale variational formulation, Int. J. Eng. Sci., 40, 20022183-2202.
    11. John T. Katsikadelis, George C. Tsiatas, Nonlinear dynamic analysis of heterogeneous orthotropic membranes by the analog equation method, Eng. Anal. Bound. Elem., Vol. 27, 2003, 115-124. http://dx.doi.org/10.1016/S0955-7997(02)00089-9.

 

View

Download

Article ID: 3307
 
DOI: 10.14419/ijet.v3i4.3307




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.