Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization

  • Authors

    • Hana Meftah Elgubbi Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
    • Siti Salhah Othman Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
    • Farah Wahida Harun Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
    2020-10-22
    https://doi.org/10.14419/ijet.v9i4.31088
  • Kaolinite, Cation Exchange Capacity, Benzyltriethylammonium Chloride, Organo-Modification, Characterization.
  • Natural kaolinite clay from Perak, Malaysia with cation exchange capacity (CEC) of 2.5 meq/100g was modified using cationic surfactant, benzyltriethylammonium chloride (BTEA-Cl), at 0.5, 1.0, 1.5 and 2.0 times the CEC. A number of techniques, namely energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption were then used for characterization of the kaolinite and/or organo-modified kaolinite clays. The presence of alkyl groups as a result of successful intercalation of cationic surfactant within the organo-kaolinite layers of the clay was exhibited by the FTIR spectra. The SEM microphotographs exhibited good dispersion of the natural clay particles and slight agglomeration in the organo-modified clay particles. XRD patterns showed that the d001 spacing of the natural kaolinite clay increased from 7.12 â„« to between 7.20 - 7.34 â„« for the organo-modified clays. Following the BET nitrogen adsorption-desorption technique, all clay samples were of Type IV with narrow hysteresis loops. Surface areas of the clays showed drastic decrease from (25.34 m2/g) for natural kaolinite clay to between 5.90 - 13.11 m2/g for organo-modified clays. The results suggested that modification of natural kaolinite clay using cation surfactant had successfully occurred. The modification can therefore be further applied for alteration and improvement of the properties of natural clays for various industrial applications.

     

     

     

  • References

    1. [1] Banik, N., Jahan, S. A., Mostofa, S., Kabir, H., Sharmin, N., Rahman, M., & Ahmed, S. (2015). Synthesis and characterization of organoclay modified with cetylpyridinium chloride. Bangladesh Journal of Scientific and Industrial Research, 50 (1), 65-70.†https://doi.org/10.3329/bjsir.v50i1.23812.

      [2] Aroke, U., & El-Nafaty, U. (2014). XRF, XRD and FTIR properties and characterization of HDTMA-Br surface modified organo-kaolinite clay. International Journal of Emerging Technology and Advanced Engineering, 4 (4), 817-825.â€

      [3] Duarte-Silva, R., Villa-García, M. A., Rendueles, M., & Díaz, M. (2014). Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Applied Clay Science, 90, 73-80.†https://doi.org/10.1016/j.clay.2013.12.027.

      [4] Boukhemkhem, A., & Rida, K. (2017). Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin. Adsorption Science & Technology, 35 (9-10), 753-773.†https://doi.org/10.1177/0263617416684835.

      [5] Adeyemo, A. A., Adeoye, I. O., & Bello, O. S. (2017). Adsorption of dyes using different types of clay: A review. Applied Water Science, 7 (2), 543-568.†https://doi.org/10.1007/s13201-015-0322-y.

      [6] Auta, M., & Hameed, B. H. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198, 219-227.†https://doi.org/10.1016/j.cej.2012.05.075.

      [7] Gao, Z., Li, X., Wu, H., Zhao, S., Deligeer, W., & Asuha, S. (2015). Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties. Microporous and Mesoporous Materials, 202, 1-7.†https://doi.org/10.1016/j.micromeso.2014.09.029.

      [8] Ijagbemi, C. O., Baek, M. H., & Kim, D. S. (2010). Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: Equilibrium, kinetics, thermodynamics and regeneration studies. Journal of Hazardous Materials, 174 (1-3), 746-755.†https://doi.org/10.1016/j.jhazmat.2009.09.115.

      [9] San Cristóbal, A. G., Castelló, R., Luengo, M. A. M., & Vizcayno, C. (2009). Acid activation of mechanically and thermally modified kaolins. Materials Research Bulletin, 44 (11), 2103-2111.†https://doi.org/10.1016/j.materresbull.2009.07.016.

      [10] Yavuz, Ö., & Saka, C. (2013). Surface modification with cold plasma application on kaolin and its effects on the adsorption of methylene blue. Applied Clay Science, 85, 96-102.†https://doi.org/10.1016/j.clay.2013.09.011.

      [11] Jian-min, R., Si-Wei, W., & Wei, J. (2010). Adsorption of crystal violet onto BTEA-and CTMA-bentonite from aqueous solutions. World Academy of Science, Engineering and Technology, 65, 790-795.â€

      [12] Santamarina, J. C., Klein, K. A., Wang, Y. H. and Prencke, E. (2002). Specific surface: determination and relevance. Canadian Geotechnical Journal, 39 (1): 233-241.†https://doi.org/10.1139/t01-077.

      [13] Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20 (6), 295-300. https://doi.org/10.1016/S0169-1317(01)00081-3.

      [14] Karaoğlu, M. H., Doğan, M., & Alkan, M. (2009). Removal of cationic dyes by kaolinite. Microporous and Mesoporous Materials, 122 (1-3), 20-27.†https://doi.org/10.1016/j.micromeso.2009.02.013.

      [15] Kooli, F. (2013). Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis. Thermochimica Acta, 551, 7-13.†https://doi.org/10.1016/j.tca.2012.09.038.

      [16] Koswojo, R., Utomo, R. P., Ju, Y. H., Ayucitra, A., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2010). Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48 (1-2), 81-86.†https://doi.org/10.1016/j.clay.2009.11.023.

      [17] Ma, J., Qi, J., Yao, C., Cui, B., Zhang, T., & Li, D. (2012). A novel bentonite-based adsorbent for anionic pollutant removal from water. Chemical Engineering Journal, 200, 97-103.†https://doi.org/10.1016/j.cej.2012.06.014.

      [18] Grim RE (1968) Clay Mineralogy, 2nd ed. New York, McGraw-Hill, 596 pp.

      [19] Al-Ani, T., & Sarapaa, O. (2008), Clay and Clay Mineralogy. Report on Geological Survey of Finland. Kaolinite Books, Litmanen.

      [20] Olaremu, A. G. (2015). Physico-chemical characterization of Akoko mined kaolin clay. Journal of Minerals and Materials Characterization and Engineering, 3 (05), 353.†https://doi.org/10.4236/jmmce.2015.35038.

      [21] Konan, K. L., Peyratout, C., Bonnet, J. P., Smith, A., Jacquet, A., Magnoux, P., & Ayrault, P. (2007). Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium. Journal of Colloid and Interface Science, 307(1), 101-108.†https://doi.org/10.1016/j.jcis.2006.10.085.

      [22] Konan, K. L., Peyratout, C., Smith, A., Bonnet, J. P., Rossignol, S., & Oyetola, S. (2009). Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions. Journal of Colloid and Interface Science, 339(1), 103-109.†https://doi.org/10.1016/j.jcis.2009.07.019.

      [23] Hashemian, S., & Parsaei, Y. (2015). Adsorption of 2-picoline and 3-amino-2-picoline onto kaolin and organo-modified kaolin. Oriental Journal of Chemistry, 31 (2), 1147-1154.†https://doi.org/10.13005/ojc/310268.

      [24] Jahan, S. A., Parveen, S., Ahmed, S., & Kabir, H. (2012). Development and characterization of organophilic clay from bentonite. Material Science, 8, 67-72.â€.

      [25] Xi, Y. (2006). Synthesis, Characterisation and Applications of Organoclays (Doctoral Dissertation, Queensland University of Technology).

      [26] Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G., & Busca, G. (2010). Bulk and surface properties of commercial kaolins. Applied Clay Science, 48 (3), 446-454.†https://doi.org/10.1016/j.clay.2010.02.002.

      [27] Horvath, E., Kristof, J., & Frost, R. L. (2010). Vibrational spectroscopy of intercalated kaolinites. Part I. Applied Spectroscopy Reviews, 45 (2), 130-147.†https://doi.org/10.1080/05704920903435862.

      [28] Ilić, B. R., Mitrović, A. A., & MiliÄić, L. R. (2010). Thermal treatment of kaolin clay to obtain metakaolin. Hemijska Industrija, 64 (4), 351-356.†https://doi.org/10.2298/HEMIND100322014I.

      [29] Meziane, O., Bensedira, A., Guessoum, M., & Haddaoui, N. (2017). Preparation and characterization of intercalated kaolinite with: Urea, dimethyl formamide and an alkylammonium salt using guest displacement reaction. Journal of Materials, 8 (10), 3625-3635.â€

      [30] Daud, N. K., & Hameed, B. H. (2010). Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst. Journal of Hazardous Materials, 176 (1-3), 938-944.†https://doi.org/10.1016/j.jhazmat.2009.11.130.

      [31] Volzone, C., & Ortiga, J. (2006). Removal of gases by thermal-acid leached kaolinitic clays: Influence of mineralogical composition. Applied Clay Science, 32 (1-2), 87-93.†https://doi.org/10.1016/j.clay.2005.11.001.

      [32] Vaculikova, L., Plevova, E., Vallova, S., & Koutnik, I. (2011). Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis.†Acta Geodynamica et Geomaterialia 8, 59–67.

      [33] Ramos, M. D., Gómez, G. I. G., & González, N. S. (2014). Immobilization of Candida rugosa lipase on bentonite modified with benzyltriethylammonium chloride. Journal of Molecular Catalysis B: Enzymatic, 99, 79-84.†https://doi.org/10.1016/j.molcatb.2013.10.021.

      [34] Mota, M. F., Patrício, A. C. L., da Silva, M. M., & Freire Rodrigues, M. G. (2015). Preparation and characterization of clay chocolate" A" organoclay using stearyldimethyl ammonium chloride as a surfactant. Materials Science Forum, 805, 667-671. https://doi.org/10.4028/www.scientific.net/MSF.805.667.

      [35] Yanguatin, H., Tobón, J., & Ramírez, J. (2017). Pozzolanic reactivity of kaolin clays, a review. Revista Ingeniería de Construcción, 32(2), 13-24.†https://doi.org/10.4067/S0718-50732017000200002.

      [36] Parolo, M. E., Pettinari, G. R., Musso, T. B., Sánchez-Izquierdo, M. P., & Fernández, L. G. (2014). Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance. Applied Surface Science, 320, 356-363.†https://doi.org/10.1016/j.apsusc.2014.09.105.

      [37] Rostami, E., Norouzbeigi, R., & Rahbar, A. (2018). Thermal and chemical modification of bentonite for adsorption of an anionic dye. Advances in Environmental Technology, 4(1), 1-12.â€

  • Downloads

  • How to Cite

    Meftah Elgubbi, H., Salhah Othman, S., & Wahida Harun, F. (2020). Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization. International Journal of Engineering & Technology, 9(4), 850-856. https://doi.org/10.14419/ijet.v9i4.31088