Ore resource modelling of Ajabanoko iron ore deposit, Ajabanoko, Nigeria

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Ore resource modelling is an essential aspect of mining operation. It is also a crucial pre-mining step required for a successful exploitation of mineral deposits. Ajabanoko iron ore resource model was developed and the ore reserve estimate carried out using inverse distance method as contained in Surpac 6.4.1 mine software. The total number of blocks used for the model is 54,475. Ore estimation result obtained from thirteen drill hole data indicates 38,313,595 tonnes of iron ore and density of 3.65 tonnes/m3. The average grade and total volume of the ore body is 36.36 % and 10,496,595 m3 respectively.



  • Keywords

    Ajabanoko; Blocks; Drill Hole; Exploitation; Resource Modelling; Reserve Estimate.

  • References

      [1] Muhammad, K. N. (2018). Ore Reserve Estimation of Saprolite Nickel Using Inverse Distance Method in PIT Block 3A Banggai Area Central Sulawesi. IOP Conf. Series: Journal of Physics: Conf. Series 979 (2018) 012047. https://doi.org/10.1088/1742-6596/979/1/012047.

      [2] Yunsel, T.Y. (2012). A practical application of geostatistical methods to quality and mineral reserve modelling of cement raw materials. The Journal of The Southern African Institute of Mining and Metallurgy. Vol. 12: 239-249.

      [3] Chanderman, L. Dohm, C.E and Minnitt, R. C. A. (2017). 3D geological modelling and resource estimation for a gold deposit in Mali. The Journal of the Southern African Institute of Mining and Metallurgy. Vol. 117, p.189. https://doi.org/10.17159/2411-9717/2017/v117n2a10.

      [4] Canadian Institute of Mining (2003). Estimation of Mineral Resources and Mineral Reserves. Best Practice Guidelines. CIM,Canada, pp. 55.

      [5] Rossi, M.E and Deutsch, C. V. (2014). Mineral Resource Estimation. Springer Science+Business Media Dordrecht. P.29. https://doi.org/10.1007/978-1-4020-5717-5.

      [6] Ayisi, Maurice, (2015). 3D Block Modeling and Reserve Estimation of a Garnet Deposit. Graduate Theses & Non-Theses. 15. http://digitalcommons.mtech.edu/grad_rsch/15.

      [7] Saboor, A. T, and Choudhary, B. S (2017). Conventional and Computer Aided Ore Reserve Estimation. International Journal of Engineering Technology Science and Research, IJETSR, 4(12): 896-903.

      [8] Castañón César, Daniel Arias, Isidro Diego, Agustin Martin-Izard and Yhonny Ruiz (2017). Resource and Reserve Calculation in Seam-Shaped Mineral Deposits; A New Approach: “The Pentahedral Method”. Minerals 7(72):1-21. https://doi.org/10.3390/min7050072.

      [9] Wang, G.; Zhang, S.; Yan, C.; Song, Y.; Li, D. (2011). Mineral potential targeting and resource assessment based on 3D geological modelling in Luanchuan region, China. Comput. Geosci. 2011, 37, 1976–1988. https://doi.org/10.1016/j.cageo.2011.05.007.

      [10] Amigun, J.O and Ako, B.D. (2009). Rock Density- A Tool for Mineral Prospection: A Case Study of Ajabanoko Iron Ore Deposit, Okene SW Nigeria. The Pacific Journal of Science and Technology. 10(2):733-741.

      [11] Olade, M.A, (1978). Pre Cambrian Iron Ore Deposits and its Environment at Itakpe Ridge, Okene, Nigeria. Institute of Mining and Metallurgy, February. Pp. B1-B9.

      [12] National Steel Development Authority (NSDA) (1976). V/O Tecchnoexport: On the Prospecting and Exploration of Itakpe Hill Iron Ore Deposit, Okene, Nigeria. NSDA. Kaduna. Pp. 1-86.

      [13] National Steel Raw Materials Exploration Agency (NSRMEA) (1994). Preliminary Report on Ajabanoko Iron Ore Deposit. NSRMEA, Kaduna. Pp. 1-79.

      [14] Nnagha, B.I. (1997). Prefeasibilty Study of the Central Zone of the Ajabanoko Hill Iron Deposit. Ecoles des Mines de Paris. Paris. P. 60.

      [15] Barton, P.B., Jr., (1993). Problems and opportunities for mineral deposit models, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., and Duke, J.M., eds., Mineral deposit modeling: Geo­logical Association of Canada Special Paper 40, p. 7–13.

      [16] Henley, S. (2000). Resources, Reserves and Reality. Earth Science Computer Applications. 16,1-2.

      [17] Wang Qingfei , Jun Deng , Huan Liu , Liqiang Yang, Li Wan a, Ruizhong Zhang (2010). Fractal Models for Ore Reserve Estimation. Ore Geology Reviews 37 (2010):2–14. https://doi.org/10.1016/j.oregeorev.2009.11.002.

      [18] Annels, A.E. (1991). Mineral Deposit Evaluation. A practical approach. Chapman & Hall London. Pp. 449.




Article ID: 29809
DOI: 10.14419/ijet.v9i1.29809

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.