Metamaterial Transmission Line-for Designing a Microstrip Patch Antenna

  • Authors

    • Awanish Kr Kaushik
    • Anubhav Kumar
    • R L. Yadava
    2018-12-13
    https://doi.org/10.14419/ijet.v7i4.39.27732
  • metamaterial, transmission line theory, composite left-handed transmission line.
  • In this paper, the fundamental properties, limit and structure of metamaterial express that the "meta-transmission line (meta-TL) is utilized for solace implies metamaterial transmission lines are reasonably homogenous structures, which have properties that don't appear in regular transmission lines. It intertwines all the transmission line structures which have interesting properties not existing in ordinary RH-TL, for instance, LH TL, CRLH TL, SRR \CSRR-stacked TL and further. As diverged from various materials, the Metamaterials are counterfeit metallic structures having meanwhile negative permittivity (É›) and vulnerability (μ), which prompts negative refractive summary. No other mate-rial on the planet demonstrates the above properties like Metamaterial. Because of these irregular properties Metamaterial can change the electric and attractive property of electromagnetic wave encountering it and in light of these reasons when Metamaterial is utilized as a bit of the make of microwave areas and radio wires the required properties can be refreshed.

     

     

     
  • References

    1. [1] C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2005)

      [2] K. P. Vemuri, F. M. Canbazoglu, and P. R. Bandaru, “Guiding conductive heat flux through thermal metamaterials,†Appl. Phys. Lett., vol. 105, p. 193904, 2014.

      [3] J. Li and C. T. Chan, “Double-negative acoustic metamaterial,†Phys. Rev. E, vol. 70, p. 055602, 2004.

      [4] Z. G. Nicolao and A. E. Motter., “Mechanical metamaterials with negative compressibility transitions,†Nat. Mater., vol. 11, pp. 608–613, 2012.

      [5] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of εand μâ€, Soviet Physics Uspekhi, Vol. 10, pp. 509-514, January-February 1968.

      [6] A Sihvola, “Metamaterials in electromagnetics (invited review)â€, metamaterials, vol 1 no 1, pp 2-11, 2007

      [7] A. Grbic and G.V. Eleftheriades, “Sub-wavelength focusing using a negative-refractive-index transmission-line lens,†IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 186-189, 2003.

      [8] A.K. Iyer, P.C. Kremer and G.V. Eleftheriades, “Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial.†Optics Express 11, pp. 696-708, April 07, 2003.

      [9] A. Grbic and G.V. Eleftheriades, “Growing Evanescent Waves in Negative-Refractive-Index Transmission-Line Media,†Applied Physics Letters, vol. 82, no. 12, pp. 1815-1817, March 24, 2003.

      [10] T.H. Hand and S.A. Cummer, "Frequency tuning electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105, 2008 .

      [11] K.A. Boulais, D.W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, "Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs," Appl. Phys. Lett. 93, 043518, 2008.

      [12] A. Degiron, J.J. Mock, and D.R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Optics Express 15, 1115, 2007.

      [13] T. Driscoll, et al., "Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide," Appl. Phys. Lett. 93, 024101 ,2008

      [14] I.V. Shadrivov, S.K. Morrison, and Y.S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Optics Express 14, 9344, 2006.

      [15] F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystalsâ€, Appl. Phys. Lett. 92, pp. 193104, 2008.

      [16] A A Zharov, I V Shadrivov, and Yu.S.Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,†Phys. Rev. Lett. 91, 037401 ,2003

      [17] C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2005)

      [18] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006)

      [19] C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2005)

      [20] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006)

      [21] G.V. Eleftheriades, K.G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley, New York, 2005)

      [22] S.Ramo, J.R.Whinnery, T.VanDuzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965)

      [23] A. A. Oliner, “A periodic-structure negative-refractive-index medium without resonant elements,†in Proc. IEEE APS/URSI International Symposium Digest, San Antonio, TX, USA, June 2002, p. 41.

      [24] C. Caloz and T. Itoh, “Application of the transmission line theory of left handed (LH) materials to the realization of a microstrip “LH lineâ€,†in Proc. IEEE Antennas and Propagation Society International Symposium, vol. 2, San Antonio, TX, USA, June 2002, pp. 412–415 vol.2.

      [25] L. Brillouin, Wave Propagation in Periodic Structures. Hoboken, New Jersey, USA: McGraw–Hill, 1946.

      [26] J.B. Pendry, A.J. Holden,D.J.Robbins,W.J. Stewart,Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

      [27] A. Sanada, C. Caloz, and T. Itoh, “Characteristics of the composite right/left-handed transmission lines,†IEEE Microw. Compon. Lett, vol. 14, no. 2, pp. 68–70, 2004.

      [28] F. Martín, Artificial Transmission Lines for RF and Microwave Applications (Wiley, New York, 2015)

      [29] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006)

      [30] R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, New York, 2008)

      [31] R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, New York, 2008)

      [32] L. Solymar, E. Shamonina,Waves in Metamaterials (OxfordUniversity Press, NewYork, 2009)

      [33] F. Martín, Artificial Transmission Lines for RF and Microwave Applications (Wiley, New York, 2015)

      [34] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

      [35] R. Marqués, J. Baena, J. Martel, F.Medina, F. Falcone,M. Sorolla, F.Martín, Novel small resonant electromagnetic particles for metamaterial and filter design, in International Conference on Electromagnetics in Advanced Applications (ICEAA ’03) (Torino, Italy, 2003). pp. 439–442

      [36] H. Booker, Slot aerials and their relation to complementary wire aerials (Babinet’s principle). J. IEE Part IIIA 93(4), 620–626 (1946)

      [37] R. King, G.H. Owyang, Complementarity in the study of transmission lines. IEEE Trans. Microw. Theory Tech. 8(2), 172–181 (1960).

  • Downloads

  • How to Cite

    Kr Kaushik, A., Kumar, A., & L. Yadava, R. (2018). Metamaterial Transmission Line-for Designing a Microstrip Patch Antenna. International Journal of Engineering & Technology, 7(4.39), 936-941. https://doi.org/10.14419/ijet.v7i4.39.27732