Conjugated Polymer Performance Comparison for Organic Solar Cells

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This paper review based on the bulk heterojunction (BHJ) solar cell using poly [N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-Phenyl-C71-butyric acid methyl ester (PCBM). This project investigates on the performance perspectives and theoretical of the solar cell. In this project, we also investigate the performance when we add nanoparticle to the active layer film. Several parameters such as concentration of solution being control and some parameter will be varying in order to achieve the desired output.



  • Keywords

    bulk heterojunction; organic solar cells; PCDTBT; PCBM; nanoparticles; performance comparison.

  • References

      [1] G. Yu, A.J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions, Journal of Applied Physics 78 (1995) 4510-4515.

      [2] S. Alem, T.Y. Chu, S.C. Tse, S. Wakim, J. Lu, R. Movileanu, Y. Tao, F. Belanger, D. Desilets, S. Beaupre, M. Leclerc, S. Rodman, D. Waller, R. Gaudiana, Effect of mixed solvent on PCDTBT: PC70BM based solar cell, Organic Electronics 12 (2011) 1788-1793.

      [3] Y.S. Peng, K.W. Guang, L.B. Ya, Z.W. Yao, L.B. Min, L.X. Hao, F.G. Sheng, Highly efficient PCDTBT: PC71BM Based Photovoltaic Devices without Thermal Annealing Treatment, Chin. Phys. Lett. 28 (2011) 1-4.

      [4] H.Y. Chen, J. Hao, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature Photonics 3 (2009) 1789-1791.

      [5] T.Y. Chu, S. Alem, P.G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupre, M. Leclerc, F. Belanger, D. Waller, R. Gaudiana, Highly efficient polycarbazole-based organic photovoltaic devices, Applied Physics Letters 95 (2009) 1-3.

      [6] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cell with internal quantum efficiency approaching 100%, Nature Photonics 3 (2009) 297-302.

      [7] B.C. Thompson, Jean M.J. Frechet, Polymer-Fullerene Composite Solar Cells, Angew. Chem. Int. Ed. 47 (2008), 58-77.

      [8] S. Kumar, T. Nann, First Solar cells based on CdTe nanoparticles/MEH-PPV composites, J. Mater. Res. 19 (2004) 1990-1994.

      [9] D. Verma, A.R. Rao, V. Dutta, Surfactant-free CdTe nanoparticles mixed with MEH-PPV hydbrid solar cell deposited b spin coating technique, Solar Energy Materials and Solar Cells 93 (2009) 1482-1487.

      [10] K.H. Taai, J.S. Huang, M.Y. Liu, D.A. Wang, S.B. Lin, P.Y. Chen, Y.H. Lin, C.F. Lin, High efficiency of flexible polymer solar cell Based on Poly (3-hexylthiophene)/fullerene, Proceedings of the 34th IEEE Photovoltaic Specialists Conference 2009 pp. 1678-1680.

      [11] Ossila.

      [12] C.R. Newman, C.D. Frisbie, D.A. da Silva Filho, J.L. Brédas, P.C. Ewbank, K.R. Mann, Introduction to organic thin film transistors and design of n-channel organic semiconductors, Chemistry of Materials 16 (2004) 4436-4451.

      [13] M. Prato, Functionalized Fullerene Materials, special issue of J. Mater. Chem. 12 (2002) 1931-2159.

      [14] K.M. Coakley, M.D. McGehee, Conjugated polymer photovoltaic cells, Chemistry of Materials 16 (2004) 4533-4542.

      [15] B.C. Thompson, Y.G. Kim, J.R. Reynolds, Spectral broadening in MEH-PPV: PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene− dioxythiophene polymer, Macromolecules 38 (2005) 5359-5362.




Article ID: 26060
DOI: 10.14419/ijet.v7i4.33.26060

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.