Mixed Convection Flow in a Double Lid-Driven Oblique Cavity Filled With Ferro Fluids in the Presence of an External Magnetic Field

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Steady laminar mixed convection and MHD effect inside a double lid-driven oblique cavity filled with a ferrofluid is studied numerically using the finite element method. An isothermal heater is placed on the left inclined wall of the cavity while the right wall is maintained at a constant cold temperature. The horizontal top a bottom moving walls are kept adiabatic. The oblique cavity is filled with a mixture of kerosene-cobalt ferrofluids. The numerical computations are obtained for various parametric values of the inclination angle of the sloping walls, Hartmann number and the volume fraction of the ferromagnetic particles. It is shown that the transfer rate is clearly enhanced with the augmentation of the ferromagnetic particles volume fraction under the influence of a relative magnetic field.


  • Keywords

    Magneto-hydrodynamics; Mixed convection; Double lid-driven flow; Ferrofluid; Oblique cavity.

  • References

      [1] Papanicolaou E, Jaluria Y. Mixed convection from an isolated heat source in a rectangular enclosure. Numer. Heat Transfer, Part A. 1990; 18:427–461.

      [2] K. Khanafer, A.J. Chamkha, Mixed convection flowin a lid-driven enclosure filled with a fluid-saturated porous medium, Int. J. Heat Mass Transf. 42 (1999) 2465–2481.

      [3] E. Abu-Nada, A.J. Chamkha, Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid, Eur. J. Mech. – B/Fluids 29 (2010) 472–482.

      [4] M.A. Ismael, I. Pop, A.J. Chamkha, Mixed convection in a lid-driven square cavity with partial slip, Int. J. Therm. Sci. 82 (2014) 47-61.

      [5] Ram B. Gupta, Uday B. Kompella, Nanoparticle Technology for Drug Delivery,New York: Taylor & Francis, 2006.

      [6] M. Sadoqi, S. Kumar, C. Lau-Cam, V. Saxena, Biocompatible nanoparticulatesystems for tumor diagnosis and therapy, in: C.S.S.R. Kumar (Ed.), Biological and Pharmaceutical Nanomaterials, Wiley-VCH, 2006, pp. 304–343.

      [7] S. Odenbach, S. Thurm, Magnetoviscous Effects in Ferrofluids, Springer, 2002.

      [8] S.W. Charles, The preparation of magnetic fluids, in: Ferrofluids, Springer, 2003, pp. 3-18.

      [9] J. Philip, J.M. Laskar, Optical properties and applications of ferrofluidsda review, J. Nanofluids 1 (1) (2012) 3–20.

      [10] [10] S. Genc, B. Derin, Synthesis and rheology of ferrofluids: a review, Curr. Opin. Chem. Eng. 3 (2014) 118–124.

      [11] T.C. Jue, Analysis of combined thermal and magnetic convection ferrofluid flow in a cavity, Int. Commun. Heat Mass Transf. 33 (2006) 846–852.

      [12] M. Sheikholeslami, M. Gorji-Bandpy, Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field, Powder Technol. 256 (2014) 490–498.

      [13] G.H.R. Kefayati, Natural convection of ferrofluid in a linearly heated cavity utilizing LBM, J. Mol. Liq. 191 (2014) 1–9.

      [14] Rahman, M. M., S. Mojumder, S. Saha, Anwar H. Joarder, R. Saidur, and A. G. Naim. Numerical and statistical analysis on unsteady magnetohydrodynamic convection in a semi-circular enclosure filled with ferrofluid. Int. J. Heat Mass Transf. 89 (2015): 1316-1330.

      [15] A. Louaraychi, M. Lamsaadi, H. El Harfi, M. Kaddiri & M. Naïmi (2018), Determination of the parameters controlling mixed convection in double lid driven shallow rectangular cavity uniformly heated. International Journal of Engineering & Technology 7, 70–75.




Article ID: 25658
DOI: 10.14419/ijet.v8i1.6.25658

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.