An Evolutionary Hybrid Model linking Particle Swarm Optimization and Simulated Annealing Algorithms for Complex Optimization Problems

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This paper describes an evolutionary hybrid model linking two algorithms: Particle Swarm Optimization (PSO) and Simulated Annealing (SA). The basic idea behind using a hybrid model is improving the reliability of the obtained results from our first model, namely MPSO (Modified PSO) based on PSO algorithm, by adding SA algorithm which is quite popular for its powerful feature of effective escaping from the trap of local minima. MPSO model uses the concept of evolutionary neighborhoods associated to parallel computation, to overcome to the two essential disadvantages of PSO: high running time and premature convergence.

    The presented algorithm has two essential operations: first running PSO algorithm in parallel using the new concept of evolutionary neighborhood to obtain a global best solution, then improving the results with SA algorithm to get the global optimal solution.

    By testing this hybrid algorithm (H-MPSO-SA) on a set of standard benchmark functions and according to the obtained results, the program have given satisfactory results of the hybrid model compared to the basic PSO and MPSO algorithms. 


  • Keywords

    Hybrid algorithm, Optimization, Metaheuristic, PSO, SA.

  • References

      [1] J. Kennedy and R. Eberhart,: “Particle Swarm Optimization,” In: Proceedings of the IEEE International Joint Conference on Neural Networks, IEEE Press, vol. 8, no. 3, pp. 1943–1948, 1995.

      [2] Y. Cooren, “Perfectionnement d'un algorithme adaptatif d'Optimisation par Essaim Particulaire. Applications en génie médical et en électronique”. Doctorat thesis, University of Paris 12 Val de Marne, France, 2008.

      [3] B. Bochnek et P. Fory’s, “Structural optimization for post buckling behavior using particle swarms”. Struct Multidisc Optim. Pages 521-531, 2006.

      [4] N. Elhami, R. Ellaia, M. Itmi: “Hybrid Evolutionary Optimization Algorithm MPSO-SA”, In: International Journal of Simulation and Multidisciplinary Optimimisation, Vol. 4, pp. 27- 32, 2010.

      [5] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

      [6] S. Zhan, J. Lin, Z. Zhang, and Y. Zhong, “List-Based Simulated Annealing Algorithm for Traveling Salesman Problem ”. In Hindawi Publishing Corporation Computational Intelligence and Neuroscience Volume 2016, Article ID 1712630. 2016.

      [7] P. Rabanal, I. Rodríguez and F. Rubio: “Parallelizing Particle Swarm Optimization in a Functional Programming Environment ». In Algorithms2014 : vol. 7, pp. 554–581, 2014.

      [8] K. Byung-I and G. Alan, "Parallel asynchronous particle swarm optimization," International Journal For Numerical Methods In Engineering, vol. 67, pp. 578-595, 2006.

      [9] J. Chang, S. Chu, J. Roddick and J. Pan: « A Parallel Particle Swarm Optimization Algorithm With Communication Strategies ». In: Journal of Information Science and Engineering, 2005.

      [10] M.Zemzami, N.Elhami, M.Itmi and N.Hmina, “Parallèlisation de la Méthode PSO: Découpage de l’espace et traitement par lot des particules“. In: International Workshop on New Services and Networks (WNSN’16). Khouribga. Morocco. 2016.

      [11] M.Zemzami, N.Elhami, M.Itmi and N.Hmina, “A New Parallel Approach For The Exploitation Of The Search Space Based On PSO Algorithm”. In: International Colloquium in Information Science and Technology (CIST’16). Tangier. Morocco. Indexed in Scopus 2016.

      [12] M.Zemzami, N.Elhami, M.Itmi and N.Hmina, “Parallelization of the PSO algorithm on evolutionary neighborhoods”. In: International Conference on Modeling, Optimization and Simulation (MOSIM’16). Montréal. Canada. 2016.

      [13] M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M. Itmi, and N. Hmina :« Applying a new parallelized version of PSO algorithm for electrical power transmission ». International Conference on Materials Engineering and Nanotechnology (ICMEN’17). Kuala Lumpur, Malizia. Indexed by Ei Compendex and Scopus (2017).

      [14] M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M. Itmi, and N. Hmina: Electrical Power Transmission Optimization based on a New Version of PSO Algorithm ». (Published 22/02/17 DOI: 10.21494/ISTE.OP.2017.0127). (2017)

      [15] G. Yang, D. Chen, and G. Zhou, “A new hybrid algorithm of particle swarm optimization,” in Lecture Notes in Computer Science, vol. 4115, pp. 50–60, 2006.

      [16] M. Bahrepour, E. Mahdipour, R. Cheloi, and M. Yaghoobi, “Super-sapso: a new sa-based pso algorithm,” in Applications of Soft Computing, vol. 58, pp. 423–430, 2009.

      [17] W. J. Xia and Z. M. Wu, “A hybrid particle swarm optimization approach for the job-shop scheduling problem,” International Journal of Advanced Manufacturing Technology, vol. 29, no. 3- 4, pp. 360–366, 2006.

      [18] X. Wang and J. Li, “Hybrid particle swarm optimization with simulated annealing,” in Proceedings of the 3rd International Conference on Machine Learning and Cybernetics (ICMLC ’04), vol. 4, pp. 2402–2405, 2004.

      [19] L. Idoumghar, M. Melkemi, R. Schott, M.I Aouad, “Hybrid PSO-SA Type Algorithms for Multimodal Function Optimization and Reducing Energy Consumption in Embedded Systems”. Applied Computational Intelligence and Soft Computing, 2011, 2011, pp.Article ID 138078.




Article ID: 25654
DOI: 10.14419/ijet.v8i1.6.25654

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.