A Novel Particle Swarm Optimization Algorithm linking Dynamic Neighborhood Topology to Parallel Computation for Complex Optimization Problems

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    In this paper, a novel approach is considered, based on Particle Swarm Optimization (PSO) technique, using two concepts: evolutionary neighborhood topology associated to parallel computation for complex optimization problems. The idea behind using dynamic neighborhood topology is to overcome premature convergence of PSO algorithm, by well exploring and exploiting the search space for a better solution quality. Parallel computation is used to accelerate calculations especially for complex optimization problems. The simulation results demonstrate good performance of the proposed algorithm in solving a series of significant benchmark test functions.



  • Keywords

    Optimization, Metaheuristic, PSO, Dynamic neighborhood, Parallel computation.

  • References

      [1] Y.Zhou and Y.Tan: “GPU-Based Parallel Particle Swarm Optimization”. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. (9), pp.1493–1500, 2009.

      [2] M.Waintraub, R. Schirru and C. Pereira: “Parallel Particle Swarm Optimization Algoritms in Nuclear Problems”. In: International Nuclear Atlantic Conference – INAC, 2009.

      [3] Ting, T.-O., Rao, M.V.C., Loo, C.K., Ngu, S.-S.: “A New Class of Operators to Accelerate Particle Swarm Optimization”. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. (4), pp. 2406– 2410, 2003.

      [4] Liu, H., Abraham, A., Zhang, W.: A Fuzzy Adaptive Turbulent Particle Swarm Optimization. International Journal of Innovative Computing and Applications 1(1), 39–47, 2007.

      [5] Paquet, U., Engelbrecht, A.P.: A New Particle Swarm Optimizer for LinearlyConstrained Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. (1), pp. 227–233, 2003.

      [6] Parsopoulos, K.E., Plagianakos, V.P., Magoulus, G.D., Vrahatis, M.N.: Objective Function “Strectching” to Alleviate Convergence to Local Minima. Nonlinear Analysis, Theory, Methods and Applications 47(5), 3419–3424, 2001.

      [7] J. Kennedy and R. Eberhart,: “Particle Swarm Optimization,” In: Proceedings of the IEEE International Joint Conference on Neural Networks, IEEE Press, vol. 8, no. 3, pp. 1943–1948, 1995.

      [8] K. E. Parsopoulos and M. N. Vrahatis: Recent approaches to global optimization problems through particle swarm optimization. In: Natural Computing: an international journal, 1(2-3), pp.235-306 2002.

      [9] M.E. Hyass and P. Hyass: Good Parameters for Particle Swarm

      [10] Optimization. In : Laboratories Technical Report no. HL1001. 2010.

      [11] P. Bratley and B. L. Fox. Algorithm 659: Implementing Sobol quasirandom sequence generator. ACM Trans. Math. Software 14, p.88-100, 1988.

      [12] K. Zielinski and R. Laur,. Stopping Criteria for Differential Evolution in Constrained Single-Objective Optimization. In: Advanced in Differential Evolution, the series Studies in Computational Intelligence Vol. 143, pp. 111-138 Springer, Berlin Heidelberg. 2008

      [13] R.C. Eberhart, P. Simpson, R. Dobbins. Computational PC Tools. Chapter 6, AP Professional. pp. 212-226, 1996.

      [14] R.C. Eberhart, Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of the 6th IEEE Congress on Evolutionary Computation, IEEE Press. pp. 84-88, 2000.

      [15] H.Y. Fan, Y. Shi. Study on Vmax of particle swarm optimization. Proceedings of the 2001 Workshop on Particle Swarm Optimization, Indiana University-Purdue University Indianapolis Press. 2001.

      [16] K. Deep, J. C. Bansal. Hybridization of particle swarm optimization with quadratic approximation. OPSEARCH. Vol. 46, N° 1, pp. 3-24, 2009.

      [17] X. Cai, Y.Tan. A study on the effect of vmax in particle swarm optimization with high dimension. International Journal of Bio-Inspired Computation (IJBIC). Vol. 1, N°. 3, pp. 210 - 216, 2009.

      [18] J. Barrera, C. A.C. Coello. Limiting the velocity in particle swarm optimization using a geometric series. Genetic And Evolutionary Computation Conference, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 1739-1740, 2009.

      [19] P. Rabanal, I. Rodríguez and F. Rubio: “Parallelizing Particle Swarm Optimization in a Functional Programming Environment ». In Algorithms2014 : vol. 7, pp. 554–581, 2014.

      [20] K. Byung-I and G. Alan, "Parallel asynchronous particle swarm optimization," International Journal For Numerical Methods In Engineering, vol. 67, pp. 578-595, 2006.

      [21] J. Chang, S. Chu, J. Roddick and J. Pan : « A Parallel Particle Swarm Optimization Algorithm With Communication Strategies ». In : Journal of Information Science and Engineering, 2005.

      [22] M.Zemzami, N.Elhami, M.Itmi and N.Hmina, “A New Parallel Approach For The Exploitation Of The Search Space Based On PSO Algorithm”. In: International Colloquium in Information Science and Technology (CIST’16). Tangier. Morocco. Indexed in Scopus, 2016.

      [23] M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M. Itmi, and N. Hmina :« Applying a new parallelized version of PSO algorithm for electrical power transmission ». International Conference on Materials Engineering and Nanotechnology (ICMEN’17). Kuala Lumpur, Malizia. Indexed by Ei Compendex and Scopus, 2017.

      [24] M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M. Itmi, and N. Hmina : Electrical Power Transmission Optimization based on a New Version of PSO Algorithm ». (Published 22/02/17 DOI: 10.21494/ISTE.OP.2017.0127). 2017.

      [25] Perdesen, M. E. H. “Good parameters for partcile swarm optimization”. Hvass Lab., Denmark, Tech. Rep. HL1001. 2010.




Article ID: 25653
DOI: 10.14419/ijet.v8i1.6.25653

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.