Virtual Trial of Glycaemic Control Performance and Nursing Workload Assessment in Diabetic Critically Ill Patients

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Tight glycaemic control in critically ill patients is used to reduce mortality in intensive care units. However, its usage is debatable in reducing hypoglycaemia or accurately maintain normoglycaemia level. This paper presents the assessment for two ‘wider’ Stochastic TARgeted (STAR) glycemic controllers, namely Controller A (blood glucose (BG) target 4.4-8.0 mmol/L) and Controller B (BG target 4.4-10.0 mmol/L) with 1 to 3 hour nursing interventions. These controllers were assessed to determine the better control on diabetic and non-diabetic patients. 66 diabetic and 66 non-diabetic critically ill patient’s data from Hospital Tunku Ampuan Afzan (HTAA) were employed for virtual trial simulations with a clinically validated physiological model. Performance metrics were assessed within the percentage time in band (TIB) of 4.4 to 8.0 mmol/L, 4.4 to 10.0 mmol/L, and 6.0 to 10.0 mmol/L. Controller A shows better performance in normoglycaemic TIB of 4.4 to 10.0 mmol/L where non-diabetic and diabetic patients achieved 92.5% and 83.8% respectively. In conclusion, Controller A is higher in efficiency and safer to be used for both patients cohorts. However, higher clinical interventions in diabetic patients within this control raise the alarm to reduce nursing workload. This is believed to improve clinical interventions burnout and ensure patient’s comfortability.


  • Keywords


    Diabetes; Glycaemic Control; Model-Based Virtual Trial; STAR Protocol; Blood Glucose

  • References


      [1] L. J. Silva-Perez, M. A. Benitez-Lopez, J. Varon, and S. Surani, (2017) “Management of critically ill patients with diabetes,” World J. Diabetes, vol. 8, no. 3, p. 89.

      [2] J. S. Krinsley, P. Maurer, S. Holewinski, R. Hayes, D. McComsey, G. E. Umpierrez, and S. A. Nasraway, (2017) “Glucose Control, Diabetes Status, and Mortality in Critically Ill Patients: The Continuum From Intensive Care Unit Admission to Hospital Discharge,” Mayo Clin. Proc., vol. 92, no. 7, pp. 1019–1029.

      [3] American Diabetes Association, “Classification and Diagnosis of Diabetes, (2017)” Diabetes Care, vol. 40, no. Supplement 1, pp. S11–S24.

      [4] G. Van den Berghe, P. Wouters, F. Weekers, C. Verwaest, F. Bruyninckx, M. Schetz, D. Vlasselaers, P. Ferdinande, P. Lauwers, R. Bouillon, W. Van Den Berghe, Greet Pieter, F. Weekers, C. Verwaest, F. Bruyninckx, M. Schetz, D. Vlasselaers, P. Ferdinande, P. Lauwers, and R. Bouillon, (2001) “Intensive Insulin Therapy in Critically Ill Patients,” N. Engl. J. Med., vol. 345, no. 19, pp. 1359–1367.

      [5] F. Suhaimi, A. Le Compte, J.-C. Preiser, G. M. Shaw, P. Massion, R. Radermecker, C. G. Pretty, J. Lin, T. and Desaive, and J. G. Chase, (2010) “What Makes Tight Glycemic Control Tight? The Impact of Variability and Nutrition in Two Clinical Studies,” J. Diabetes Sci. Technol., vol. 4, no. 2010, pp. 284–298.

      [6] M. A. Malesker, P. A. Foral, A. C. McPhillips, K. J. Christensen, A. Julie A. Chang, and D. E. Hilleman, (2007) “An Efficiency Evaluation of Protocols for Tight Glycaemic Control in Intensive Care Units,” Am. J. Crit. Care, vol. 16, no. 6, pp. 589–598.

      [7] J. S. Krinsley and J.-C. Preiser, (2015) “Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults,” Crit. Care, vol. 19, no. 1, p. 179.

      [8] J.-C. Preiser, (2009) “NICE-SUGAR: the end of a sweet dream?,” Crit. Care, vol. 13, no. 3, p. 143.

      [9] H. Zaman Huri, V. Permalu, and S. R. Vethakkan, (2014) “Sliding-scale versus basal-bolus insulin in the management of severe or acute hyperglycemia in type 2 diabetes patients: a retrospective study.,” PLoS One, vol. 9, no. 9, p. e106505.

      [10] J. G. Chase, G. M. Shaw, T. Lotz, A. Lecompte, J. Wong, J. Lin, T. Lonergan, M. Willacy, and C. E. Hann, (2007) “Model-based Insulin and Nutrition Administration for Tight Glycaemic Control in Critical Care,” Curr. Drug Deliv., vol. 4, no. 4, pp. 283–296.

      [11] K. Okabayashi, T., Nishimori, I., Maeda, H., Yamashita, K., Yatabe, T. and Hanazaki, (2009) “Effect of Intensive Insulin Therapy Using a Closed-Loop Glycemic Control System in Hepatic Resection Patients A prospective randomized clinical trial.,” Diabetes Care, vol. 32, no. 8.

      [12] J. Lin, N. N. Razak, C. G. Pretty, A. Le Compte, P. Docherty, J. D. Parente, G. M. Shaw, C. E. Hann, and J. Geoffrey Chase, (2011) “A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients,” Comput. Methods Programs Biomed., vol. 102, no. 2, pp. 192–205.

      [13] S. Schmidt, D. Boiroux, A. K. Duun-Henriksen, L. Frøssing, O. Skyggebjerg, J. B. Jørgensen, N. K. Poulsen, H. Madsen, S. Madsbad, and K. Nørgaard, (2013) “Model-based closed-loop glucose control in type 1 diabetes: the DiaCon experience.,” J. Diabetes Sci. Technol., vol. 7, no. 5, pp. 1255–64.

      [14] W. Alam, N. Ali, S. Ahmad, and J. Iqbal, (2018) “Super twisting control algorithm for blood glucose regulation in type 1 diabetes patients,” Proc. 2018 15th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2018, vol. 2018–Janua, no. January, pp. 1–7.

      [15] I. C. R. Crosara, C. Mélot, and J.-C. Preiser, (2015) “A J-shaped relationship between caloric intake and survival in critically ill patients,” Ann. Intensive Care, vol. 5, no. 1, p. 37.

      [16] U. K. Jamaludin, F. Dzaharudin, and N. N. A. Razak, (2016) “Performance of STAR Virtual Trials for Diabetic and Non-Diabetic in HTAA Intensive Care Unit,” IEEE EMBS Conf. Biomed. Eng. Sci., pp. 193–198.

      [17] L. M. Fisk, A. J. Le Compte, G. M. Shaw, S. Penning, T. Desaive, and J. G. Chase, (2012) “STAR development and protocol comparison,” IEEE Trans. Biomed. Eng., vol. 59, pp. 3357–3364.

      [18] A. Evans, A. Le Compte, C.-S. S. Tan, L. Ward, J. Steel, C. G. Pretty, S. Penning, F. Suhaimi, G. M. Shaw, T. Desaive, and J. G. Chase, (2012) “Stochastic targeted (STAR) glycemic control: design, safety, and performance.,” J. Diabetes Sci. Technol., vol. 6, no. 1, pp. 102–15, .

      [19] K. Stewart, C. G. Pretty, F. Thomas, G. M. Shaw, T. Desaive, B. Benyo, J. Homlok, A. Illyes, N. S. Nemedi, and J. G. Chase, (2016) “Generalizability of a Nonlinear Model-based Glycemic Controller,” IFAC-PapersOnLine, vol. 49, no. 5, pp. 212–217.

      [20] J. L. Dickson, K. W. Stewart, C. G. Pretty, M. Flechet, T. Desaive, S. Penning, B. C. Lambermont, B. Benyó, M. Shaw, and J. G. Chase, (2017) “Generalisability of a Virtual Trials Method for Glycaemic Control in Intensive Care,” IEEE Trans. Biomed. Eng., vol. 9294, no. c, pp.1-18.

      [21] A. Abu-Samah, N. H. Ahamad, N. N. Razak, F. M. Suhaimi, U. K. Jamaluddin, A. M. Ralib, M. B. Mat-Nor, C. G. Pretty, J. L. Dickson, and G. Chase, (2018) “Model-Based Insulin-Nutrition Administration for Glycemic Control in Malaysian Critical Care: First Pilot Trial,” in 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences: ICIBEL 2017 (in conjunction with APCMBE 2017), pp. 189–196.

      [22] A. Abdul Razak, A. Abu-Samah, N. N. Razak, N. Ahamad, F. M. Suhaimi, U. K. Jamaludin, A. Md Ralib, and M. B. Mat-Nor, (2018) “Investigation of glucose-insulin model efficacy for diabetes patient in the ICU,” in IFMBE Proceedings, vol. 67, pp. 177–181.

      [23] J. G. Chase, F. Suhaimi, S. Penning, J.-C. Preiser, A. J. Le Compte, J. Lin, C. G. Pretty, G. M. Shaw, K. T. Moorhead, and T. Desaive, (2010) “Validation of a model-based virtual trials method for tight glycemic control in intensive care.,” Biomed. Eng. Online, vol. 9, no. 1, p. 84.

      [24] C. E. Hann, J. G. Chase, J. Lin, T. Lotz, C. V Doran, and G. M. Shaw, (2005) “Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model.,” Comput. Methods Programs Biomed., vol. 77, no. 3, pp. 259–70.

      [25] A. A. Razak, N. N. Razak, F. M. Suhaimi, and U. Jamaluddin, (2014) “Efficacy of Glucose-Insulin Model for Sepsis Patients,” vol. 00, pp. 1–5.

      [26] K. W. Stewart, C. G. Pretty, H. Tomlinson, F. L. Thomas, J. Homlok, S. N. Noémi, A. Illyés, G. M. Shaw, B. Benyó, and J. G. Chase,(2016) “Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis,” Ann. Intensive Care, vol. 6, no. 1.

      [27] H. Thabit and R. Hovorka, (2014) “Glucose control in non-critically ill inpatients with diabetes: Towards closed-loop,” Diabetes, Obes. Metab., vol. 16, no. 6, pp. 500–509.


 

View

Download

Article ID: 22322
 
DOI: 10.14419/ijet.v7i4.35.22322




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.