Study of the permittivity, permeability and microwave attenuation of zinc ferrites nanoparticles prepared by sol-gel methods

  • Authors

    • Sabah Ibrahim Abbas physics
    • Abbas Salam Khamas
    2019-08-03
    https://doi.org/10.14419/ijet.v7i4.19985
  • Ferrites, Permittivity, Permeability, Microwave Absorber.
  • Zinc ferrite nanoparticles is synthesized by the sol-gel method from Zn (NO3)2.6H2O and Fe (NO3)3.9H2O by using molar concentrations (0.2M and 0.4M), and all samples were sintered at temperatures (600 °C, 800°C and 1000 ) for two hours. X-ray diffraction patterns reveal the presence nanoparticles of cubic spinel phase of zinc ferrite structure with a mix of other phases are a hexagonal hematite type of α-Fe2O3 and the hexagonal wurtzite structure of ZnO. Morphology characteristic has been examined by using the scanning Probe Microscope and shown the grain size is increasing when the molar concentration increases probably due to the large radius of zinc ions than . Complex permeability, complex permittivity, and attenuation of zinc ferrite composite are investigated in X-band frequency. The real part of magnetic permeability decreases with increasing frequency because the external field changes rapidly at high frequency and the Magnetic loss is very low due to reduce the eddy current. The real and imaginary parts of the permittivity remains nearly constant and low values with increasing frequency for concentrations 0.2M and 0.4M at sintering temperature 600℃. The constant values for real part of permittivity means there was a dominant one type of polarization. The low values of imaginary part of permittivity may be due to decrease of dipole polarization. The best desired absorbance and attenuation of microwave can be achieved at the low values of the sintering temperature (600 ) for two concentration where the reflectivity of the waves at the minimum value.

     

     

     
  • References

    1. [1] Y. Liu, S. C. Wei, Y. J. Wang, H. L. Tian, H. Tong, and B. S. Xu, “Characterization of (Mg, La) substituted Ni-Zn Spinel Ferriteâ€, Physics Procedia, vol. 50, pp. 43-47, 2013. https://doi.org/10.1016/j.phpro.2013.11.009.

      [2] Y. Hwang,†Microwave Absorbing Properties of NiZn-Ferrite synthesized from Waste Iron Oxide Catalystâ€, Materials latters, vol. 60, pp. 3277-3280,2006. https://doi.org/10.1016/j.matlet.2006.03.010.

      [3] L. H. Gul, W. Ahmed, A. Maqsood,†Electrical and Magnetic Characterization of Nnanocrystalline Ni–Zn Ferrite Synthesis by Co-Precipitation Routeâ€, Journal of Magnetism and Magnetic Materials, vol. 320, pp. 270-275, 2008. https://doi.org/10.1016/j.jmmm.2007.05.032.

      [4] L. D. Tung, V. Kolesnichenko, G. Caruntu, D. Caruntu, Y. Remond, V. O. Golub, C. J. O. Connor, L. Spinu,â€Annealing effects on the Magnetic properties of nanocrystalline Zinc Ferriteâ€, Physica B:Condensed Matter, vol. 319, pp.116-121,2002. https://doi.org/10.1016/S0921-4526(02)01114-6.

      [5] I. V. Kasiviswanath, Y. L. N. Murthy, K. Tata, R. Singh,â€Synthesis and Characterize of nano Ferrites by Citrate Gel Methodsâ€, International Journal of Chemical Sciences, vol.11,pp. 64-72,2013. http://www.tsijournals.com/articles/synthesis-and-characterization-of-nanoferrites-by-citrate-gel-method.pdf.

      [6] L. Gunther,†Quantum tunneling of magnetizationâ€, Physics World, vol. 3, pp.28, 1990. https://doi.org/10.1088/2058-7058/3/12/21.

      [7] I. Zalite, G. Heidemane, A. Krumina, D. Rasmane, M. Maiorov,†ZnFe2O4 Containing Nanoparticles: Synthesis and Magnetic Propertiesâ€, Materials Sciences & Applied Chemistry, vol. 34,pp. 38-44, 2017. https://doi.org/10.1515/msac-2017-0006.

      [8] A. C. F. M. Costa, E. Tortella, M. R. Morelli, R. H. A. Kiminami,†Synthesis, microstructure and magnetic properties of Ni–Zn ferritesâ€, Journal of Magnetism and magnetic Materials, vol. 256, pp. 174-182, 2003. https://doi.org/10.1016/S0304-8853(02)00449-3.

      [9] P. Priyadharsini, A. Pradeep, G. Chandrasekaran,†Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn “, Journal of Magnetism and magnetic Materials, vol. 321, pp. 1898-1903, 2009. https://doi.org/10.1016/j.jmmm.2008.12.005.

      [10] H. Sharma, S. Jain, P. M. Raj, K. P. Murali, R. Tummala,†Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocompositesâ€,Journal of Electronic Materials, vol. 44, pp. 3819-3826, 2015. https://doi.org/10.1007/s11664-015-3801-x.

      [11] T. A. S. Ferreira, J. C. Waerenborgh, M. H. R. M. Mendonca, M. R. Nunes, F. M. Coasta,†Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation methodâ€, Solid State Science, vol. 5, pp. 383-392, 2003. https://doi.org/10.1016/S1293-2558(03)00011-6.

      [12] N. Millot, S. LeGallet, D. Aymes, F. Bemard, Y. Grin,â€Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesisâ€, Journal of the European Ceramic Society,vol.27, pp.921-926, 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.04.139.

      [13] S. I. Abbas, H. T. John, A. J. Fraih,†Preparation of Nano Crystalline Zinc –Ferrite as Material for Micro Waves Absorption by Sol-Gel Methodsâ€, Indian Journal of Sciences & Technology, vol.10,2017. https://doi.org/10.17485/ijst/2017/v10i21/113197.

      [14] C. G. Anchieta, A. Cancelier, M. A. Mazutti, S. L. Jahn, R. C. Kuhn, A. Gundel, O. C. Filho, E. L. Foltto,†Effects of Solvent Diols on the Synthesis of ZnFe2O4 Particles and Their Use as Heterogeneous Photo-Fentonâ€, Catalysts Materials, vol. 7, pp. 6281-6290, 2017. https://doi.org/10.3390/ma7096281.

      [15] C. B. R. Jesus, E. C. Mendonca, L. S. Silva, W. S. D. Folly, C. T. Meneses, J. G. S. Duque,†Weak ferromagnetic component on the bulk ZnFe2O4 compoundâ€, Journal of Magnetism &Magnetic Materils, vol. 350 pp. 47-49, 2014. https://doi.org/10.1016/j.jmmm.2013.09.025.

      [16] I. Mohai, J. Szépvölgyi, I. Bertóti, M. Mohai, J. Gubicza, T. Ungár,†Thermal plasma synthesis of zinc ferrite nanopowderâ€, Solid State Ion, Vol. 141, pp. 163-168, 2001. https://doi.org/10.1016/S0167-2738(01)00770-6.

      [17] A. Simona, P. Vlazan, S. Novaconi, I. Grozescu, P.V. Notingher,†Electromagnetic behavior of zinc ferrites obtained by a co-precipitation techniqueâ€, U. P. B. Sci. Bull., Series C, vol. 73, 2011. https://www.researchgate.net/publication/265523408.

      [18] W.W. Jie, Z. C. Guang, J. Q. Jie,†Fabrication and performance optimization of Mn-Zn ferrite/EPcomposites as microwave absorbing materialsâ€, Chin. Phys. B, vol. 22, 2013. https://doi.org/10.1088/1674-1056/22/12/128101.

      [19] V. Y. Liao,†Modern Microwave Technologyâ€, Ellis Horwood Limited, New York, 1987.

      [20] L. F. Chen, C. Ong, C. Neo,†Microwave Electronics Measurement and Materials Characterizationâ€, John Wiley & Sons, 2004. https://onlinelibrary.wiley.com/doi/book/10.1002/0470020466. https://doi.org/10.1002/0470020466.

      [21] H. Bayrakdar,†Electromagnetic propagation and Absorbing property of Ferrite-Polymer Nancomposite structureâ€, Progress in Electromagnetic Research M, vol. 25, pp. 269-281, 2012. https://doi.org/10.2528/PIERM12072303.

      [22] A. B. Nicolson, G. F. Ross,†Measurement of the intrinsic properties of materials by time-domain techniquesâ€, IEEE Transaction on Instrumentation & Measurement IM, vol. 19, pp. 377-382, 1970. https://doi.org/10.1109/TIM.1970.4313932.

      [23] A. L. De paula, M. C. Rezende, J. J. Barroso,†Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X bandâ€, Journal Aerospace Technology& Management, vol. 3, pp. 59-64, 2011. https://doi.org/10.5028/jatm.2011.03019410.

      [24] Z. Z. Lazarevic, C. Jovalekic, V. N. Ivanovski, A. Recnik, A. N. Milutinovic, B. Cekic, N. Z. Romcevic,†Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted routeâ€, Journal of physics and chemistry of solids, vol.75, pp.869-877, 2014. https://doi.org/10.1016/j.jpcs.2014.03.004.

      [25] G. Z. Shen, G. S. Cheng, Y. Cao, Z. Xu,â€Preparation and microwave absorption of M type ferrite nanoparticle compositesâ€,Materials Science –Poland, vol.28, pp.327-334, 2010. http://www.materialsscience.pwr.wroc.pl/bi/vol28no1/articles/ms_32_2009_114shen.pdf.

      [26] S. E. Jacobo, J. C. Aphesteguy, N. N. Shegoleva, G. V. Kurlyandskaya,†Structural and Magnetic Properties of Nanoparticles of NiCuZn Ferrite Prepared by the Self-Combustion Method “,Solid State Phenomena, vol.168, pp. 333-340, 2011. https://doi.org/10.4028/www.scientific.net/SSP.168-169.333.

      [27] A. Khan, M. A. Bhuiyan, G. Al-Quaderi, K. H. Maria, S. Choudhury, K. A. Hossaini, S. Aktheri, D. K. Saha,†Dielectric and Transport Properties of Zn-Substitude Cobalt Ferritesâ€, Journal Bangladesh Academy of Sciences, vol. 37, pp.73-82, 2013. https://doi.org/10.3329/jbas.v37i1.15683.

      [28] H. Vu, D. Nguyen, J. G. Fisher, W. Hamoon, S. Bae, H. G. Park, B. G. Park,†CuO – based sintering aids for low temperature sintering of BaFe12O19 ceramicsâ€, Journal of Asian Ceramic Societies, vol. 1, pp.170-177, 2013. https://doi.org/10.1016/j.jascer.2013.05.002.

      [29] A. Kumar, V. Agarwala, D. Singh,†Effect of particles size of BaFe12O19 on the Microwave absorption characteristic in X-bandâ€, Progress International Electromagnetics Research M,vol. 29, pp.223-236, 2013. https://doi.org/10.2528/PIERM13011604.

      [30] A. Mandal, D. Ghosh, A. Malas, P. Pal, C. K. Das,†Synthesis and Microwaves Absorbing properties of Cu-Doped Nickel Zinc Ferrite/Pb (Zr0.52 Ti0.48) O3 nanocompositesâ€, Journal of Engineering,2013. https://doi.org/10.1155/2013/391083.

      [31] S. Singhal, T. Namgyal, S. Bansal, K. Chandra,†Effect of Zn Substitution on the Magnetic properties of Cobalt Ferrite Nanoparticles Prepared Via Sol-Gel Routeâ€, Journal Electromagnetic Analysis &Application, vol.2, pp. 376-381, 2010. https://doi.org/10.4236/jemaa.2010.26049.

      [32] S. K. Dhawan, A. Ohlan, K. Dingh,†Designing of Nano Composites of Conducting Polymers for EMI Shielding,Advances in Nanocomposites - Synthesis Advances in Nanocomposites – Synthesisâ€, Characterization and Industrial Applications, pp. 430-481, 2011. https://doi.org/10.5772/14752.

      [33] D. Li, Y. Feng, D. S. Pan, L. W. Jiang, Z. M. Dai, S. J. Li, Y. Wang, J. He, W. Liu, Z. D. Zhang,†Negative Imaginary Parts of Complex Permeability and Microwaves Absorption Performance of Core double –Shelled FeCo/C/ Fe2.5Cr0.5Se4 Nanocompositesâ€, Royal Society of Chemistry, vol.6, pp.73020-73027,2016. https://doi.org/10.1039/C6RA12772J.

      [34] U. N. Trivedi, M. C. Chhantbar, K. B. Modi, H. H. Joshi,†Frequency dependent dielectric behavior of Cadmium and Chromium Co- substituted nickel ferrite,†Indian Journal of Pure & Applied Physics, vol. 43, pp. 688-690, 2005. https://pdfs.semanticscholar.org/3c4d/b73d3016cccf4e36194c5b497701b5b673d1.pdf.

      [35] X. Qin, Y. Cheng, K. Zhou, S. Huang, X. Hui,†Microwave Absorbing Properties of W-Type Hexa ferrite Ba(MnZn)xCo2(1-x)Fe16O27â€, Journal of Materials Science and Chemical Engineering, vol. 1, pp. 8-13, 2013. https://doi.org/10.4236/msce.2013.14002.

      [36] N. Chen, M. Gu,†Microstructure and Microwave Absorption Properties of Y- Substituted Ni-Zn Ferritesâ€, Open Journal of Metal, vol. 2, pp.37- 41, 2012. https://doi.org/10.4236/ojmetal.2012.22006.

  • Downloads

    Additional Files

  • How to Cite

    Ibrahim Abbas, S., & Salam Khamas, A. (2019). Study of the permittivity, permeability and microwave attenuation of zinc ferrites nanoparticles prepared by sol-gel methods. International Journal of Engineering & Technology, 7(4), 7056-7062. https://doi.org/10.14419/ijet.v7i4.19985