A new versatile active element and its application in design of minimum component all pass filters

  • Authors

    • Jahariah Sampe Institute of Microengineering and Nanoelectronicss (IMEN), Universiti Kebangsaan Malaysia
    • Mohammad Faseehuddin Institute of Microengineering and Nanoelectronicss (IMEN), Universiti Kebangsaan Malaysia
    • Shawal Hamid Md Ali
    2018-11-15
    https://doi.org/10.14419/ijet.v7i4.18995
  • All Pass Filter, Current Mode, Current Conveyor, Cascadable, Tunable.
  • In this paper a new active block namely Dual X current conveyor differential input transconductance amplifier (DXCCDITA) is discussed. A first order current mode (CM) Single Input Multi Output (SIMO) universal filter and four structures of all pass filters are developed using single DXCCDITA. Each of the proposed filters require only a single active element and minimum number of passive components one/three for implementation. The designed SIMO filter uses only one resistor and one capacitor both are grounded. Furthermore, one of the designed all pass filter uses only one grounded capacitor and enjoys cascadeability and independent tunability of pole frequency. The effect of non-idealities on the proposed filter topologies is also studied. The DXCCDITA is implemented in 0.35μm TSMC CMOS technology parameters and tested in Tanner EDA. Sufficient number of simulations are provided to establish the functionality of the proposed structures.

     

     

     

     

     
  • References

    1. [1] M. Faseehuddin, J. Sampe, S. Islam, “Schmitt Trigger based on Dual Output Current Controlled Current Conveyor in 16nm CMOS technology for digital applicationsâ€, In Semiconductor Electronics (ICSE), 2016 IEEE International Conference, pp. 82-85. https://doi.org/10.1109/SMELEC.2016.7573596.

      [2] A. S. Sedra, G. W. Roberts, F. Gohh,â€The current conveyor: history, progress and new resultsâ€, IEE Proceedings G-Circuits, Devices and Systems, vol. 137, no. 2, pp. 78-87, April 1990. https://doi.org/10.1049/ip-g-2.1990.0015.

      [3] M. Y. Yasin, B. Gopal (2011): High Frequency Oscillator Design Using a Single 45 nm CMOS Current Controlled Current Conveyor (CCCII+) with Minimum Passive Components, Circuits and Systems, vol. 28, no. 2, pp. 53. https://doi.org/10.4236/cs.2011.22009.

      [4] R. Senani, D. R. Bhaskar, A. K. Singh, “Recent Advances and Future Directions of Researchâ€, In Current Conveyors 2015, pp. 533-544. Springer International Publishing. https://doi.org/10.1007/978-3-319-08684-2_16.

      [5] N. Pandey, S. K. Paul (2004): All-pass filters based on CCII− and CCCII−, International Journal of Electronics, vol. 91, no. , pp. 485-489.

      [6] A. Lahiri, A. Chowdhury (2009): A Novel First-Order Current-Mode All-Pass Filter Using CDTAâ€, Radioengineering, vol. 18, no. 3, pp. 301.

      [7] F. Yucel, E. Yuce (2015): A new, single CCII-based, voltage-mode, first-order, all-pass filter and its quadrature oscillator application, Scientia Iranica. Transaction D, Computer Science & Engineering, Electrical, vol. 22, no. 3, pp. 1068.

      [8] D. T. Comer, D. J. Comer, J. R. Gonzalez, “A high-frequency integrable band pass filter configurationâ€, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 10, pp. 856-61, Oct 1997. https://doi.org/10.1109/82.633445.

      [9] A. Toker, S. Ozoguz, O. Cicekoglu, C. Acar, “Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q band pass filter configurationâ€, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no.9, pp. 949-54, Sep 2000. https://doi.org/10.1109/82.868465.

      [10] O .Cicekoglu, H. Kuntman, S. Berk (1999): All-pass filters using a single current conveyor, International Journal of Electronics, vol. 86, no. 8, pp. 947-55. https://doi.org/10.1080/002072199132941.

      [11] K. D. Sharma, K. Pal, C. Psychalinos, “A Resistorless High Input Impedance First Order All-Pass Filter Using CCCIIs†,World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 7, no. 2, pp. 213-215.

      [12] W. Tangsrirat, W. Tanjaroen, T. Pukkalanun (2009): Current-mode multiphase sinusoidal oscillator using CDTA-based all pass sections, AEU-International Journal of Electronics and Communications, vol. 63, no. 7, pp. 616-22. https://doi.org/10.1016/j.aeue.2008.05.001.

      [13] M.A. Ibrahim, H. Kuntman, S. Ozcan, O. Suvak, O. Cicekoglu 2004. New first-order inverting-type second-generation current conveyor-based all-pass sections including canonical forms, Electrical Engineering, vol. 86, no. 5, pp. 299-301. https://doi.org/10.1007/s00202-003-0205-3.

      [14] S. Minaei, E. Yuce (2010): Unity/variable-gain voltage-mode/current-mode first-order all-pass filters using single dual-X second-generation current conveyor, IETE Journal of Research, Vol. 56, no. 6, pp. 305-12. https://doi.org/10.1080/03772063.2010.10876319.

      [15] J. Mohan, S. Maheshwari, D. S. Chauhan (2010): Voltage mode cascadable all pass sections using single active element and grounded passive componentsâ€, Circuits and Systems, vol. 1, no. 01, pp. 5-11. https://doi.org/10.4236/cs.2010.11002.

      [16] J. W. Horng, C. L. Hou, C. M. Chang, W. Y. Chung, H. L. Liu, C. T. Lin (2006) High output impedance current-mode first-order all pass networks with four grounded components and two CCIIs, International Journal of Electronics, vol. 93, no. 9, pp. 613-21. https://doi.org/10.1080/00207210600711580.

      [17] B. Metin, K. Pal, O. Cicekoglu (2007): All-pass filter for rich cascadability options easy IC implementation and tunabilityâ€, International Journal of Electronics, vol. 94, no. 11, pp. 1037-1045. https://doi.org/10.1080/00207210701763589.

      [18] S. Maheshwari (2007): A new current-mode current-controlled all-pass sectionâ€, Journal of Circuits, Systems, and Computers, vol. 16, no. 2, pp. 181-189. https://doi.org/10.1142/S0218126607003599.

      [19] B. Metin, K. Pal (2009): Cascadable all pass filter with a single DO-CCII and a grounded capacitor, Analog Integrated Circuits and Signal Processing, vol. 61, no. 3, pp. 259. https://doi.org/10.1007/s10470-009-9301-2.

      [20] B. Metin, O. Cicekoglu, “Component reduced all-pass filter with a grounded capacitor and high-impedance inputâ€, International Journal of Electronics, Vol. 96, no. 5, pp. 445-455, May 2009. https://doi.org/10.1080/00207210802640595.

      [21] A. M. Soliman (1997) Generation of current conveyor-based all-pass filters from op amp-based circuits, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 4, pp. 324-30. https://doi.org/10.1109/82.566650.

      [22] K. Pal, S. Rana (2004): Some new first-order all-pass realizations using CCII, Active and passive electronic components, vol. 27, no. 2, pp. 91-94. https://doi.org/10.1080/0882751031000116188.

      [23] M. A. Ibrahim, H. Kuntman, O. Cicekoglu (2003): First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC, Circuits, Systems and Signal Processing, vol. 22, no. 5, pp. 525-36. https://doi.org/10.1007/s00034-003-1111-7.

      [24] S. Maheshwari, B. Chaturvedi (2012): High-input low-output impedance all-pass filters using one active element, IET circuits, devices & systems, vol. 6, no. 2, pp. 103-110. https://doi.org/10.1049/iet-cds.2011.0213.

      [25] S. Minaei, M. A. Ibrahim (2005): General configuration for realizing current-mode first-order all-pass filter using DVCC, International Journal of Electronics, vol. 92, no. 6, pp. 347-56. https://doi.org/10.1080/00207210412331334798.

      [26] J. W. Horng, S. W. Hu, Y. S. Jhao (2018): High Output Impedance Current-Mode First-Order Allpass Filter Employing One DXCCII. In 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW).

      [27] F. Mohammad, J. Sampe, S. Shireen, S. H. M. Ali (2017): Minimum passive components based lossy and lossless inductor simulators employing a new active block, AEU-International Journal of Electronics and Communications, 82, pp. 226-240. https://doi.org/10.1016/j.aeue.2017.08.046.

      [28] J. Sampe, M. Faseehuddin, B. Y. Majlis, S. H. M. Ali, Z. Yusoff, (2017). Grounded and floating impedance simulators employing a new active element. In IEEE Regional Symposium on Micro and Nanoelectronics (RSM), pp. 58-61. https://doi.org/10.1109/RSM.2017.8069112.

      [29] J. Sampe, M. Faseehuddin, S. H. M. Ali (2018). Design of ultra-low voltage CCII utilizing level shifting technique and a dual mode multifunction universal filter as an application. Journal of engineering research, Vol. 6, no.2, pp. 155-175.

      [30] M. Faseehuddin, J. Sampe, S. Shireen, S. H. M. Ali (2018). Lossy and lossless inductance simulators and universal filters employing a new versatile active block. Informacije MIDEM, vol. 48, no. 2, pp. 97-113.

      [31] A. Fabre, O. Saaid, H .Barthelemy (1995): On the frequency limitations of the circuits based on second generation current conveyors, Analog Integrated Circuits and Signal Processing, vol. 7, no. 2, pp.113-129. https://doi.org/10.1007/BF01239166.

  • Downloads

  • How to Cite

    Sampe, J., Faseehuddin, M., & Hamid Md Ali, S. (2018). A new versatile active element and its application in design of minimum component all pass filters. International Journal of Engineering & Technology, 7(4), 4481-4488. https://doi.org/10.14419/ijet.v7i4.18995