Expectation-maximization-based channel estimation algorithm for OFDM visible light communication systems

  • Authors

    • Yaseein Soubhi Hussein Asia Pacific University of Technology & Innovation
    • Mohamad Yusoff Alias Multimedia University
    • Ayad A. Abdulkafi Tikrit University
    • Nazaruddin Omar TM Research & Development Sdn Bhd
    • Mohd Kamarulzamin Bin Salleh TM Research & Development Sdn Bhd
    2018-09-24
    https://doi.org/10.14419/ijet.v7i4.15994
  • Bit Error Rate, Channel Estimation, Expectation Maximization, Optical OFDM Visible Light Communication.
  • The tremendous growth of indoor communication requires increased capacity and appropriate quality of services. Visible light communica-tion (VLC) is a green technology that shows great promise in terms of its ability to meet the demand for communication services. Orthogo-nal frequency division multiplexing (OFDM) enables VLC to provide a higher data rate and to combat inter-symbol interference. However, an accurate and efficient channel estimation method is needed for coherent demodulation at the receiver end of an OFDM system. In this paper, a new algorithm for OFDM-based VLC systems is proposed. The algorithm is based on expectation maximization and is called the expectation maximization for visible light communication (EM-VLC) algorithm. The algorithm is implemented to find the maximum-likelihood (ML) estimation of the channel impulse response and to find unknown parameters. In addition, a low-rank minimum mean square error (lr-MMSE) estimator algorithm is developed and its performance is compared with least squares (LS) and minimum mean square error (MMSE) estimators. The proposed EM-VLC algorithm improves the performance of OFDM VLC systems by significantly reducing the bit error rate (BER) and consequently increasing system throughput. The simulation results demonstrate that the EM-VLC algorithm outper-forms the three channel estimation algorithms, LS, MMSE and lr-MMSE.

     

     

  • References

    1. [1] Singh, S., & Bharti, R. (2014).163m/10Gbps 4QAM-OFDM visible light communication. IJETR, 2, 225-228.

      [2] Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., & Haas, H. (2014). VLC: Beyond point-to-point communication. Communications Magazine, IEEE, 52(7), 98-105. https://doi.org/10.1109/MCOM.2014.6852089.

      [3] Li, Y., Tsonev, D., & Haas, H. Non-DC-biased OFDM with optical spatial modulation. In Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on, 2013 (pp. 486-490): IEEE.

      [4] Xia, C., Hainfeng, W., & Honglin, H. A Low Complexity Pilot-Aided Channel Estimation Resisting Residual Timing Errors for OFDM Systems. In Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, 3-7 Sept. 2007 2007 (pp. 1-5). https://doi.org/10.1109/PIMRC.2007.4394644.

      [5] Guvenc, I., Gezici, S., Sahinoglu, Z., & Kozat, U. C. (2011). Reliable communications for short-range wireless systems: Cambridge University Press. https://doi.org/10.1017/CBO9780511974366.

      [6] Yang, X., Min, Z., Xiongyan, T., Jian, W., & Dahai, H. A post-processing channel estimation method for DCO-OFDM visible light communication. In Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on, 2012 (pp. 1-4): IEEE.

      [7] Zhang, T., Guo, S., Chen, H., Zhong, F., & Ma, C. (2014). Enhancing the bit error rate of indoor visible light communication systems using adaptive channel estimation algorithm. IET Communications, 9(4), 501-507. https://doi.org/10.1049/iet-com.2014.0649.

      [8] Lin, W.-F., Chow, C.-W., & Yeh, C.-H. (2015). Using specific and adaptive arrangement of grid-type pilot in channel estimation for white-lightLED-based OFDM visible light communication system. Optics Communications, 338, 7-10. https://doi.org/10.1016/j.optcom.2014.09.080.

      [9] Chen, X., & Jiang, M. (2017). Adaptive Statistical Bayesian MMSE Channel Estimation for Visible Light Communication. IEEE Transactions on Signal Processing, 65(5), 1287-1299. https://doi.org/10.1109/TSP.2016.2630036.

      [10] Wang, J.-b., Jiao, Y., Dang, X.-y., Chen, M., Xie, X.-x., & Cao, L.-l. (2011). Training sequence based channel estimation for indoor visible light communication system. Optoelectronics Letters, 7, 213-216. https://doi.org/10.1007/s11801-011-0143-7.

      [11] Wang, J.-B., Jiao, Y., Song, X., & Chen, M. (2011). Optimal training sequences for indoor wireless optical communications. Journal of Optics, 14(1), 015401. https://doi.org/10.1088/2040-8978/14/1/015401.

      [12] Wang, J.-B., Jiao, Y., Song, X., Zhao, X., Gu, M., Chen, M., et al. (2011). Complementary sequences–based channel estimation for diffuse wireless optical communications. Optical Engineering, 50(7), 075003-075003-075006.

      [13] Pham, Q. N., Rachim, V. P., an, J., & Chung, W.-Y. (2017). Ambient Light Rejection Using a Novel Average Voltage Tracking in Visible Light Communication System. Applied Sciences, 7(7), 670. https://doi.org/10.3390/app7070670.

      [14] Wang, J.-B., Xie, X.-X., Jiao, Y., & Chen, M. (2012). Training sequence based frequency-domain channel estimation for indoor diffuse wireless optical communications. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1-10. https://doi.org/10.1186/1687-1499-2012-326.

      [15] Zhuang, X., & Vook, F. W. Iterative channel estimation and decoding for a turbo-coded OFDM system via the EM algorithm. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, 2002 (Vol. 3, pp. III-2337-III-2340): IEEE

      [16] Krishna, E. H., Sivani, K., & Reddy, K. A. OFDM channel estimation and equalization using multi scale independent component analysis. In Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015 IEEE International Conference on, 2015 (pp. 1-5): IEEE.

      [17] Popoola, W. O., Ghassemlooy, Z., & Stewart, B. G. (2014). Pilot-assisted PAPR reduction technique for optical OFDM communication systems. Journal of Lightwave Technology, 32(7), 1374-1382. https://doi.org/10.1109/JLT.2014.2304493.

      [18] Popoola, W. O., Ogunkoya, F. B., & Sinanović, S. Mitigating nonlinearities under average power constraint in visible light communication. In Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International, 2014 (pp. 815-820): IEEE.

      [19] Hussein, Y. S., Alias, M. Y., & Abdulkafi, A. A. On performance analysis of LS and MMSE for channel estimation in VLC systems. In 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), 2016 (pp. 204-209): IEEE.

      [20] Dissanayake, S. D., & Armstrong, J. (2013). Comparison of aco-ofdm, dco-ofdm and ado-ofdm in im/dd systems. Journal of Lightwave Technology, 31(7), 1063-1072. https://doi.org/10.1109/JLT.2013.2241731.

      [21] Ma, X., Kobayashi, H., & Schwartz, S. C. (2004). EM-based channel estimation algorithms for OFDM. EURASIP Journal on Applied Signal Processing, 2004, 1460-1477.

      [22] Karkhanechi, H. M., & Levy, B. C. EM-based channel estimation for space-time block coded MIMO OFDM systems. In Signal Processing Systems Design and Implementation, 2006. SIPS'06. IEEE Workshop on, 2006 (pp. 177-181): IEEE.

      [23] KabaoÄŸlu, N. (2013). EM Based Data Detection Algorithm for Downlink of a Single Hop Relaying Network. Wireless Personal Communications, 1-14. https://doi.org/10.1007/s11277-012-0562-1.

      [24] Al-Naffouri, T. Y. (2007). An EM-based forward-backward Kalman filter for the estimation of time-variant channels in OFDM. IEEE Transactions on Signal Processing, 55(7), 3924-3930. https://doi.org/10.1109/TSP.2007.894271.

      [25] Vizziello, A., Savazzi, P., & Favalli, L. Mitigation of intercarrier interference in OFDM systems over slow fading channels based on the EM algorithm. In MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, 2010 (pp. 1320-1325): IEEE.

      [26] Armstrong, J., & Schmidt, B. J. (2008). Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. Communications Letters, IEEE, 12(5), 343-345. https://doi.org/10.1109/LCOMM.2008.080193.

      [27] Carruthers, J. B., & Kahn, J. M. Modeling of nondirected wireless infrared channels. In Communications, 1996. ICC'96, Conference Record, Converging Technologies for Tomorrow's Applications. 1996 IEEE International Conference on, 1996 (Vol. 2, pp. 1227-1231): IEEE.

      [28] Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB: John Wiley & Sons. https://doi.org/10.1002/9780470825631.

      [29] Ozdemir, M. K., & Arslan, H. (2007). Channel estimation for wireless OFDM systems. IEEE Communications Surveys & Tutorials, 9(2), 18-48. https://doi.org/10.1109/COMST.2007.382406.

      [30] Bandara, K., Niroopan, P., & Chung, Y.-H. PAPR reduced OFDM visible light communication using exponential nonlinear companding. In Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2013 IEEE International Conference on, 2013 (pp. 1-5): IEEE.

      [31] Arslan, H., & Bottomley, G. E. (2001). Channel estimation in narrowband wireless communication systems. Wireless Communications and Mobile Computing, 1(2), 201-219. https://doi.org/10.1002/wcm.14.

      [32] Won Gi, J., Kyung Hyun, P., & Yong Soo, C. An efficient channel estimation technique for OFDM systems with transmitter diversity. In Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on, 2000 2000 (Vol. 2, pp. 1246-1250 vol.1242). https://doi.org/10.1109/PIMRC.2000.881618.

      [33] Wang, S., & Abdi, A. (2005). Aperiodic complementary sets of sequences-based MIMO frequency selective channel estimation. IEEE Communications Letters, 9(10), 891-893. https://doi.org/10.1109/LCOMM.2005.10019.

      [34] Shen, Y., & Martinez, E. (2006). Channel estimation in OFDM systems. Application note, Freescale semiconductor.

      [35] Carpentier, A., & Kim, A. K. (2015). An iterative hard thresholding estimator for low rank matrix recovery with explicit limiting distribution. arXiv preprint arXiv:1502.04654.

      [36] Ma, X., Kobayashi, H., & Schwartz, S. C. An EM-based estimation of OFDM signals. In Wireless Communications and Networking Conference, 2002. WCNC2002. 2002 IEEE, 2002 (Vol. 1, pp. 228-232): IEEE.

      [37] Moon, T. K. (1996). The expectation-maximization algorithm. Signal processing magazine, IEEE, 13(6), 47-60. https://doi.org/10.1109/79.543975.

      [38] Xie, Y., & Georghiades, C. N. (2003). Two EM-type channel estimation algorithms for OFDM with transmitter diversity. Communications, IEEE Transactions on, 51(1), 106-115, https://doi.org/10.1109/TCOMM.2002.807617.

      [39] Bossert, M., Donder, A., & Trushkin, A. (1995). Channel estimation and equalization in orthogonal frequency division multiplexing systems. ITG FACHBERICHT, 485-485.

      [40] González, O., Guerra, M., & Martín, R. (2014). Multi-User Visible Light Communications. Advances in Optical Communications, 36-63.

      Wang, C.-X., Haider, F., GAO, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications magazine, 52(2), 122-130. https://doi.org/10.1109/MCOM.2014.6736752

  • Downloads

  • How to Cite

    Soubhi Hussein, Y., Yusoff Alias, M., A. Abdulkafi, A., Omar, N., & Kamarulzamin Bin Salleh, M. (2018). Expectation-maximization-based channel estimation algorithm for OFDM visible light communication systems. International Journal of Engineering & Technology, 7(4), 2638-2645. https://doi.org/10.14419/ijet.v7i4.15994