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Abstract 
 

A randomized complete block design (RCBD) is useful for analyzing a treatment variable and one block variable under the condition 

where experimental units are limited. The RCBD is assumed that there is no interaction between the treatment variable and the block 

variable. This paper considered the symmetric randomized complete block design (SRCBD) with t treatments and t blocks, when a lost 

value occurs in the experiments. For the analysis of variance for the unbalanced data, the ready-made formulae were not provided in the 

past. The SRCBD with a lost value was analyzed by means of the fundamental underlying linear regression model in order to determine 

the reliable mathematical formulae for the fitted parameters and the overall regression sum of squares of experimental data. It is noted 

that all possible parameters are considered in the overall regression sum of squares which will be helpful for the analysis of variance 

through the exact approach (the model comparison approach) at a later stage.  
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1. Introduction 

Randomization, replication, and blocking are the three primary 

concepts of the planning for the classical DOE based on Fisher's 

principles [1]. Experimentation plays an important role in the de-

sign and improvement of product and production, mainly in order 

to determine the most influential variables on the response varia-

ble and set the influential variables so that the value of response 

variable is near the desired nominal value. The randomized com-

plete block design (RCBD), the balanced incomplete block design 

(BIBD), and the Latin square design (LSD) are three well-known 

examples of the use of the blocking principle. Both RCBD and 

BIBD support the examination of experiments for one suspected 

factor (treatment variable) and one blocked nuisance (known and 

controllable variable). The BIBD is based on the background in-

formation on the RCBD where all treatment-unit combinations of 

the RCBD can be run in each block. However, the BIBD allows 

experimenters to ignore some experimental observations in each 

block and each treatment of suspected factor in the planning stage 

owing to the limited number of facilities, apparatus or things used 

in experiments (i.e., material, animals, plants, food and so on), 

including the limitation of the high experimental cost [2]. The 

BIBD can be applied to the case that the large number of treat-

ments is preferable with the incomplete observations in each 

treatment. In addition, the symmetric randomized complete block 

design (SRCBD) is symmetric if a number of treatments are equal 

to a number of blocks [3].  

Besides using the classical DOE, a number of experimenters turn 

to Taguchi method proposed by Dr. Genichi Taguchi in the 1980s. 

This method is the analysis of a robust design via the signal-to-

noise ratio. Taguchi method is designed to try to examine the ef-

fect of the large number of potential variables on the response 

variable. For more details on these examples of the implementa-

tion, readers are referred to the papers of Manivannan et al. [4] 

and Ngo et al. [5]. 

In a real scientific test under certain conditions, the experimenters 

might face a difficult situation in which a set of experimental ob-

servations is not complete. The incomplete-observation situation 

can be commonly divided into two situations: (1) the initial inten-

tion to cause the incomplete observations due to a limitation on 

the number of experimental units, (2) the accidental situation. 

The first situation can be either the existence of balanced charac-

teristic or unbalanced arrangement. For instance, Youden [6], 

Yates [7], and Ai et al. [8], respectively proposed the Youden 

square design, the BIBD, and the balanced incomplete Latin 

square design (BILSD). Such a balanced arrangement can help 

make the analysis of the variances (ANOVA) easier with the sim-

ple formulae to determine the treatment and error sums of squares. 

In the second situation which might occur from bad control of 

some variables, the reading values from experiment are abnormal 

or not observed. Hence, their values might be cut from a set of 

observations, leading to the unbalanced or asymmetrical arrange-

ment. It is important to note that there is no certain formula for the 

analysis of the variances (ANOVA) in the incomplete-observation 

experimental design.  
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A rich literature review on the missing plot technique with non-

iterative and iterative methods according to the original paper of 

Allan and Wishart [9] and their extension is given by Little and 

Rubin [10]. In their missing plot technique, the differential calcu-

lus is used to determine the lost observations with the minimal 

error sum of squares. The estimates of the lost observations for the 

vacant cells usually cause the treatment sum of squares with an 

upward bias. Hence, after using the missing-plot technique, the 

next process is the determination of the bias. Afterward, this bias 

is subtracted from the initial treatment sum of squares. In addition, 

Baird and Kramer [11] considered the BIBD consisting of the 

additional lost observations. They focused on the estimation of the 

additional lost observations by minimizing the error sum of 

squares.  

The exact approach (the model comparison approach) relying on 

the general linear model is the method in which the determination 

of the lost observations is not made. This approach is what Mont-

gomery [1] calls ‘the general regression significance test’. Next, 

the analysis of covariance technique was applied to address the 

issue of incomplete experimental designs associated with the miss-

ing-plot technique, e.g. Coons [12], Cochran [13], and Wilkinson 

[14]. The earliest paper with a reference to the analysis of covari-

ance technique in the experiment belongs to Bartlett [15]. Recent-

ly, Ogbonnaya and Uzochukwu [16] provided the explicit formu-

lae for the estimates of the single or several lost data for one-factor 

analysis of covariance with one covariate. The use of the analysis 

of covariance technique helps give the unbiased estimates of the 

error and treatment sums of squares. 

Above all, methodologies, except the exact approach, must esti-

mate the lost observations for the vacant cells. With a common 

sense view, the lost observations should not be estimated because 

their values are not derived from the actual and appropriate exper-

iments. Hence, this research encouraged the use of the exact ap-

proach with the general linear model in order to tackle the prob-

lems of incomplete experimental design. Recently, the expression 

of the overall regression sum of squares for the LSD with the one 

lost data was developed by Sirikasemsuk [17] and Sirikasemsuk 

and Leerojanaprapa [18]; while the case of the two lost data was 

given by Sirikasemsuk and Leerojanaprapa [19]. 

The current research dealt with the SRCBD consisting of one lost 

observation. Our aim was to provide the explicit and mathematical 

formulae for the estimates of the fitted parameters and the overall 

regression sum of squares. It is also noted that the overall regres-

sion sum of squares for the full effect model helps calculate the 

treatment sum of squares for the analysis of the variance. In this 

research, the SRCBD with any t treatments (or t blocks) is consid-

ered. The examples of SRCBD can be shown in Fig. 1. 

The notations and their respective definitions used in this research 

are as follows:  

 

ijy  the 
thij  observation taken under row (treatment) i, and 

column j  

i index of rows or treatments (i = 1, 2, 3, …, t) 

j index of columns (j = 1, 2, 3, …, t) 

t the number of treatments (or blocks) 
  the parameter of the overall mean 

i  the row effects of level i of blocking variable 

j  the treatment effects of level j of treatment variable 

̂  the estimate of the parameter of    

i̂  the estimate of the parameter of the 
thi  row effect or 

treatment effect 

j̂  the estimate of the parameter of the 
thj  column effect 

y  the grand total 

iy  the 
thi  row total or treatment total 

jy  the 
thj  column total 

r  index of the row in which the observation is missing 
c  index of the column in which the observation is missing 

),,( R  the regression sum of squares for the full effect 

model of ijy  

 
Fig.1: Two sample configurations of the SRCBD with one lost observa-

tion: (a) t = 4 (b) t = 5 

The organization of the rest of this research is as follows: Section 

2 provides the set of least square normal equations and the esti-

mates of the fitted parameters. In Section 3, the ready-made for-

mula of the overall regression sum of squares is derived to make 

simplicity. The concluding remarks are provided in Section 4. 

2. Estimates of full-effect-model parameters 

Based on the an additive effects model, which does not include the 

block by the factor interaction terms, the formal linear-model 

structure of the full effect model for ijy  of the RCBD (or the 

SRCBD) is  
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where ij  is random or unexplained error in the value of the re-

sponse variable within each treatment–block combination and is 

assumed to be normally distributed with a mean of zero and a 

certain variance. 

According to the work of Rencher and Schaalje [20], the overall 

regression sum of squares for the full effect model of ijy  is 

adapted as 
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To determine the estimated values of parameters in the full effect 

model, the least square normal equations for the t × t SRCBD 

design with one lost value are:  

  



  yttttt c

t

cjj

jr

t

rii

i  ˆ)(ˆˆ)(ˆˆ:
,,

111
11

2  

(a)  1  l'  2    c  4

1 2 3 4

 1 1  /   y 1 .

 2 2   /  y 2 .

  3    / y 3 .

 4  r 4 /   y 4 .  = y r .

y. 1 y. 2 y. 3 = y. c y. 4

(b)  1  c  2    4  5

1 2 3 4 5

 1 1 /     y 1 .

 2  r 2    / y 2 .  = y r .

  3    /  y 3 .

 4 4   /   y 4 .

 5 5  /    y 5 .

y. 1 = y. c y .2 y .3 y .4 y. 5

the vacant cell

Block

T
re

at
m

en
t

T
re

at
m

en
t

Block



52 International Journal of Engineering & Technology 

 

 

    



  r

t

cjj

jrr ytt
,

ˆˆˆ:
1

11   4

    cc

t

rii

ic ytt 



   ˆˆˆ:
,

11
1

 5

riwhenytt i

t

j

jii  




1

 ˆˆˆ:  

cjwhenytt jj

t

i

ij  



  ˆˆˆ:
1

 

In the RCBD, there are the following restricted assumptions:  
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With Eqs. (8) and (9), the normal equations (3)-(7) can be con-

densed into the following equations: 
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The estimates of the fitted parameters of Eq. (1) can be solved 

and determined as the following Proposition 1. 

 

Proposition 1: In the SRCBD with one lost value, the estimates of 

the fitted parameters in the full effect model of y  can be deter-

mined as 
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Proof.  Multiplying )( 2t  on both sides of Eq. (10), then adding 

Eqs. (11) and (12), and rearranging, the parameter estimate of   

is expressed in Eq. (15). The fitted parameters r̂  and c̂  in Eqs. 

(16) and (17) can be easily solved from Eqs. (11) and (12). When 

ri   and cj  , it is noted that the fitted parameters 
i̂  and 

j̂  

in Eqs. (18) and (19) can be easily solved from Eqs. (13) and (14). 

This completes the proof.    

3. Overall regression sum of squares 

The overall regression sum of squares can be solved and deter-

mined as the following Proposition 2. 

 

Proposition 2: In the SRCBD with one lost value, the overall 

regression sum of squares for the full effect model of ijy  can be 

determined as 
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Proof. Substituting Eqs. (16), (17), (18) and (19) into Eq. (2), we 

obtain 
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Substituting Eq. (15) in Eq. (21) together with the algebraic sim-

plification yields Eq. (20). This completes the proof.    

 

An attracting illustration which was laid out in a 5 × 5 SRCBD as 

shown in Table 1, is adapted. There were five different investiga-

tors (treatments) on five separate days. 

The overall regression sum of squares for the full model can be 

easily calculated by Eq. (21) and is equal to 11325.823. It is noted 

that the overall regression sum of squares will lead to the calcula-

tion for the unbiased ANOVA table later. 

 

 

 

Table 1: Example 

 

Investigator  

(Treatment  

Variable) 

Day (Block Variable) 
Total 

1 2 3 4 5 

1 22.1 18.6 23.0 24.3 17.1 11051 .. y  

2 23.5 16.5 18.7 22.0 --- 7802 .. y  

3 17.4 23.8 22.8 23.9 20.0 91073 .. y  

4 20.3 23.4 25.9 18.7 24.2 51124 .. y  

5 25.7 24.8 18.9 20.6 24.6 61145 .. y  

 

 

1091 .y  

 

11072 .. y  31093 .. y  51094 .. y  9855 .. y  8520...y  

 

 



International Journal of Engineering & Technology 53 

 

 

 

4. Conclusion  

The literature showed that there was no ready-made formula to 

solve the RCBD with a lost value through the exact approach with 

a general regression significance test in which no estimate of the 

lost values was made. In the unbalanced designs, the usual formu-

lae for determination of all sums of squares cannot be used for the 

ANOVA table. The exact approach with the general linear model 

was preferable to tackle the problems of incomplete block design 

in the paper. The SRCBD of any number of treatments consisting 

of one unobserved data with one replication was considered. This 

current paper used the least square normal equations to find the 

estimated full-model parameters and to provide the explicit and 

mathematical formula for the overall regression sum of squares for 

the full effect model, thereby simplifying the calculation process. 

The proposed formula was applicable to the one-lost-value 

SRCBD of any configuration. In addition, it is important to note 

that the overall regression sum of squares in this current paper will 

help construct the ANOVA table applicable to the SRCBD with 

one lost observation. In the future research, the overall regression 

sum of squares of the reduced effect model that ignores the treat-

ment effects should be determined. The treatment sum of squares 

can also be derived from the difference between the regression 

sums of squares of the full effect model and the reduced effect 

model.  
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