

Copyright © 2018 T. N. S. Poojitha et al. This is an open access article distributed under the Creative Commons Attribution License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 243-245

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A study on mutation testing of object oriented programs

T. N. S. Poojitha *, K. V. L. Pushpanjali, D. Goutham, K. V. Yashwanth, Srinivas Prasad

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation

*Corresponding author E-mail: sivapoojitha15@gmail.com

Abstract

Mutation testing is a modern approach which gives more appropriate results. In comparison to traditional approaches, it gives high quali-

ty output. Previously it is not used mostly because of its high cost factor. This is because mutation testing deals with white box testing.

White Box testing checks every module of the software in detail. If we use this it takes a lot of time and money. Recent approaches

which came in mutation testing made it easy to implement for any software. Mutation take a look ating could be a fault based mostly

testing technique within which mutants area unit generated within the program and apply totally different test cases on the mutants. Some

mutants are killed and some are alive. On the bottom of killed and alive mutants, mutant score is calculated. Based on the mutants which

are alive the test cases can be improvised there by the quality of the source code is increased. we propose a tool which gives more effec-

tive output of testing. We propose a tool which takes the outputs of various static tools available and combines it with the outputs of dy-

namic tools available. Our proposed tool includes outputs of available tools like Jester, Mujava, PMD to effectively detect the vulnerabil-

ities and produce high quality software as output.

Keywords: Mutation Testing; Equivalent Mutants; Mutation Operators; Mutation Score.

1. Introduction

In software testing Test coverage is the essential factor. Mutation

testing helps in analysing the program if a group of testing tech-

niques are sufficient to ensure that the product meets all the quali-

ty guidelines. If we are unable to find the ambiguities or errors, we

can’t gurantee that the system is free from errors. Mutation testing

is an efficient way of fault based testing from the perspective of

errors caused by programmers to improve the quality of test suite.

Mutation Testing is a strategy that has been created utilizing two

essential thoughts Competent Programmer Hypothesis reveals that

the developers write programs that are somewhat contrasted from

the coveted program and Coupling Effect Hypothesis reveals that

recognizing basic errors will prompt the recognition of more se-

vere mistakes that was initially proposed in 1970s by De Millo et

al and Hamlet [1]. This method involves creation of mutants,

which are small parts of source code modified to create suitable

test cases. Mutants are detected and killed by making the original

source code to differ from the mutant. The mutant score is calcu-

lated based on the number of mutants alive and the number of

mutants killed. Mutation operators depends upon programming

languages there are different open source tools to perform the

mutation testing depending on the different programming lan-

guages, but there are some traditional mutation operators like de-

leting a statement, replacing the Boolean expressions, replacing of

arithmetic operators, replacing the value or name of the variable.

The best part of the mutant generation is that the mutation opera-

tors can be depicted absolutely and will provide a fault-seeding

process [2]. Various mutation operators are decided based on the

original program creating an indefinite set of mutant programs.

We can change certain values of constants or attributes in the mu-

tant program these are called as value mutations. We can change

decision making operators in the source program to obtain the

mutant program this type of mutants are called as decision muta-

tions. We can delete a line of code in the source program or swap

the lines of code to generate a mutant this type of mutants called

as statement mutations.

2. Process of mutation testing

Mutation Testing is a structural testing approach that can be used

to check the efficiency or the precision of a particular software or

program. There is a characterized procedure to implement the

mutation testing that is as per the following, contemplating the

actual code on which mutation testing has to be implemented.

Presently errors are brought into the actual code by making nu-

merous renditions called mutants. There can be on one fault for

each mutant so we require more number of mutants for the same

source code and the goal of this mutation testing is to fail the mu-

tation version of code which confirms the efficiency of the test

case. We build certain test cases for our source code which are

together termed as the test suite now after introducing the faults to

the source program this program is termed as the mutant program.

we can find the test case adequacy by applying the test cases to the

actual code and to the mutant code. On contrasting the first pro-

gram with that of mutant program if the first program and the

mutant program produce a similar yield then that mutant is slaugh-

tered by the experiment. From this we can affirm that the experi-

ment is sufficient to distinguish the change amongst unique and

the mutant program. In the event that the yield produced by the

source program and mutant program is diverse then that mutant is

kept alive all things considered we have to enhance the test cases

in order to execute every one of the mutants. Mutant score is com-

puted to calculate the sufficiency of the test cases the proportion

of number of mutants slaughtered to that of aggregate number of

mutants duplicated by hundred results in mutation score. Mutation

testing suffers from equivalent mutants. Equivalent mutant acts in

the same behaviour of the source program. On introducing a

http://creativecommons.org/licenses/by/3.0/

244 International Journal of Engineering & Technology

change to the source program does not modify the meaning of the

original program.

Fig. 1: Process of Mutation Testing.

3. Types of mutation testing

Mutation testing can be carried out in three ways, they are as fol-

lows. Strong mutation testing: A mutation testing is called as

strong only if it fulfils the accompanying conditions. (1) the test

must reach the statement that is mutated. (2) the input data that is

to be tested should be infected by the program state by enabling

varying program states for the mutant program and the original

source code. Consider the following example, a test x=1 and y=0

will accept this condition. (3) the program state that is incorrect

must propagate to the program output and the test is checked. The

above three conditions are together called as the RIP model. Weak

mutation testing: A mutation testing is called as weak mutation if

these two conditions are satisfied they are (1) Mutated statement

must be reached by a test. (2) the input data that is to be tested

should infect the program state by causing different program states

for the mutant program and the original program. Consider the

following example, a test x=1 and y=0 will accept this condition.

Weak mutation testing requires less computing power when com-

pared to that of strong mutation testing. Weak mutation testing is

firmly related to the coverage methods. Firm mutation testing: the

mutation testing which falls in the middle of both the strong and

weak mutation testing is called as firm mutation testing. For firm

mutation, it is not expected that an assertion catches the difference

in behaviour. unlike weak mutation, where the change that is in-

duced should propagate some distance from the place of the

origin.

4. Mutation operaotrs

Mutation operators defines the type of operation that has to be

changed in the source program to generate the mutant program.

There are two types of sorts they are method level mutation opera-

tors and class level mutation operators. (1) MuJava changes the

expressions by insertion, replacement or deletion of the primitive

operator. Method level mutation can be performed on six types of

operators [7]. (2) Class level mutation operators are implemented

in MuJava. There are four categories of mutation operators they

are broadly classified as follows: Encapsulation, Inheritance, Pol-

ymorphism, Java-specific Features .Encapsulation:

(1.1)Encapsulation oversees data stowing endlessly. It is the limit

of an inquiry make a point of constrainment around its data and

techniques. Encapsulation empowers an engineer to describe the

passageway particular articles. For this numerous access modifiers

are used. Deciding the wrong access modifier can incite erroneous

outcomes. We use a passageway modifier change overseer to

change the passage modifier of the source program. This empow-

ers an analyzer to ensure that the correct level of accessibility is

used as a piece of a program.

(1.2)Inheritance: The data that is present in the once class can be

inherited or used in the other class this is called inheritance. Code

reusability is the special feature that is present in the inheritance.

(1.3)Polymorphism: Polymorphism enables items to respond dis-

tinctively to a similar strategy. It is actualized by having numerous

strategies with a similar name.

5. Advantages of mutation testing

Mutation testing is an intense way to deal with achieve high scope

of the source program. We can build the extent of testing this aides

in accomplishing higher norms. In regular testing methods the

scope of the testing is only limited to some pre conditions but in

mutation testing the scope is widely extended. The end users or

the customers are highly benefited by mutation testing as a system

that undergoes the mutation testing is highly reliable and stable to

that of a system that does not include mutation testing. Mutation

testing has the capability to uncover all the uncertainties that are in

the source code which cannot be done by almost all other testing

methods. It can be applied parallel to other testing methods so as

to get higher efficiency of the source program. Mutation testing is

a powerful mechanism to detect the testing inadequacies or to

check the coverage on testing of the particular source code by

using the mutant program. The steps that are involved in the muta-

tion testing are fully automated such as creating the mutants, mu-

tation operators, results which reduce the human effort. We can

perform the mutation testing manually or using an automated tool

so the developer has the choice to select the testing that best suits

the project. It can distinguish the undetectable deformities that

can't be recognized by the consistent testing systems there are sure

imperfections that can't be recognized by the other testing strate-

gies however those imperfections can be recognized by utilizing

the change testing as the extent of the transformation testing is

high contrasted with that of other testing techniques.

6. Disadvantages of mutation testing

Mutation testing is extremely costly as we need to generate a mu-

tant program for the original program. Mutation testing involves

source code changes so this method is not suitable to the black box

testing. Each change program has a similar number of experiments

to that of the first program along these lines, more number of mu-

tant projects should be tried. Mutation testing is time consuming

as it requires to generate mutant program for the original program

if the source program is large then more number of mutant pro-

grams need to be generated each has some finite number of test

cases which takes more time. As it takes more time it cannot be

tested manually we need an automation tool for that purpose. This

mutation testing is not user friendly as we must understand the

complete features of the automation tool which takes more time

and requires human effort. Transformation testing requires many

experiments to recognize the mutant from the first source code.

Change testing is hard to actualize on account of complex trans-

formations or complex projects. Mutation testing isn't appropriate

to the equal mutants as the computerization instrument can't rec-

ognize the blunders in comparable mutants so that the part of the

original program that contains the equivalent mutants must be

identified and the testing has to take place manually on these

equivalent mutants.

International Journal of Engineering & Technology 245

7. Tools review

Mutation testing can be done in many programming languages

depending on the convenience of the software tester following

are the automated mutation testing tools based on the program-

ming language.

7.1. Jester

Jester is an open source tool used for the mutation testing and

jester can also be used as the additional plugin for the eclipse IDE.

Jester is a motorized change testing device that is used to test the

java programs. Jester works with JUnit tests. Jester does elemen-

tary adjustments to the projects, for example, changing If procla-

mations to genuine or false, and so forth. Subsequent to making

these alterations, it runs tests on the adjusted projects. a inherent

script is used to generate the webpages to show the results. Jester

is entirely distinct to that of code coverage tools. jester's approach

is called as the machine-controlled error seeding. we can't consid-

er jester as the substitute for the code coverage tools it is a recip-

rocal approach [5].

7.2. Jumble

Is a basic non-realistic open source robotization instrument for

change testing. It changes over the substance reports into interpre-

tation that enables perusing the organization of the record. muddle

works straight forwardly at a source code level and quicken the

testing process. The compelled number of Mutation administrators

maintained by Jumble are according to the accompanying: in-

creases, Conditional, switch articulations, Binary Arithmetic Op-

erations, Return Values, Inline Constants and Class Pool Con-

stants. Disorder could be a class level change testing instrument

that works alongside JUnit. A transformation is performed on the

source code that must be tried. On the off chance that there is a

mistake created amid the execution of the change program then

the experiments are sufficiently productive to identify the blun-

ders. Alternately if the change program does not demonstrate any

mistake on execution of the transformation program then the ex-

periments are not sufficiently proficient to identify the blunders

for this situation we need to enhance the experiments.

7.3. µJava (mujava)

MuJava is a computerization instrument to perform change testing

on java programs. Mujava utilizes two gatherings of change muta-

tion operators they are technique level and class-level. MuJava

utilizes numerous technique level and class-level mutation opera-

tors to make the mutant projects. At that point the experiment are

executed on the mutant projects and assesses the transformation

scope on the mutant projects. Transformation mutation operators

considers the program under test and roll out the important syntac-

tic improvements on it. These syntactic changes portray regular

linguistic slip-ups made by software engineers while composing

code. MuJava realizes a 'do faster' approach to manage change

testing to save collection time [6]. This 'do faster; approach is best

sensible for challenge arranged undertakings. The arrangement of

MuJava utilizes the Mutant Schemata Generation approach.

Following are the two courses of action that are used by the mu-

tant schemata age approach they are aggregation of the main pro-

gram and assembling of the meta-mutant program. The change

transformation administrators that are used by the Mujava for the

change testing are of two sorts they are structure change adminis-

trators and lead change transformation administrators. The Mujava

gadget make the structure and direct mutants. For the lead mu-

tants, orchestrate time reflection is utilized to separate the funda-

mental program. The MSG engine at that point employments

gather time reflection likewise to make a meta-mutant program.

For the fundamental mutants, the primary source code is accumu-

lated using the Java compiler. BCEL API is then used to incorpo-

rate or delete class people in the subsequent byte code interpreta-

tion [6].

8. Conclusion

Mutation testing is a form of white box testing which requires the

change in the source code. Mutation testing methodically assesses

the nature of existing test cases by calculating the mutation score.

No matter how, mutation testing suffers from equivalent mutants

in which the testing has to be carried out manually, and a high

computational cost related with a large pool of generated mutants

for the original program. Mutation testing can be applied to all the

design phases, coding. Apart from testing phase it can also be

applied to other phases of the project. Mutation testing can be

implemented parallel to the testing phase to achieve high quality

test cases and quality software meeting all the standards. Using

mutation testing teams get higher performance related to quality

test cases.

References

[1] Problems of Mutation Testing and Higher OrderMutation Test-
ingQuang Vu Nguyen, Lech MadeyskiInstitute of Informatics,

Wroclaw University of Technology, WybrzezeWyspianskiego
27,50370 Wroclaw, Poland.

[2] Is Mutation an Appropriate Tool for Testing Experiments? J.H.

Andrews Computer Science Department University of Western On-
tario London, Canada and L.C. Briand Y. Labiche Software Quality

Engineering Laboratory Systems and Computer Engineering De-

partment.
[3] A Comparative analysis of Mutation Testing tools for Java Forosty-

anova Mariya PhD Student at National Research Tomsk State Uni-

versity mariafors@mail.ru Dongak Barkhas Student at National Re-
search Tomsk State University.

[4] Mutation Operators for Concurrent Java (J2SE 5.0)1 Jeremy S.

Bradbury, James R. Cordy, Juergen Dingel School of Computing,
Queen’s University Kingston, Ontario, Canada {bradbury, cordy,

dingel}@cs.queensu.ca

[5] Moore, I. “Jester – A JUnit Test Tester”. Proceedings of the 2nd
International Conference on Extreme Programming and Flexible

Processes in Software Engineering (XP2001).

[6] Ma, Y. S., Offutt, J. & Kwon, Y. R. “MuJava: An Automated Class
Mutation System”. Journal of Software Testing, Verification and

Reliability, 15(2):97-133, June 2005.

https://doi.org/10.1002/stvr.308.

https://doi.org/10.1002/stvr.308

