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Abstract 
 

Designing an Automatic Fuzzy Rule-based Classification Systems (FRBCSs) is considered as optimization problem associated to a result 

of high interpretability and accuracy. Interpretability and accuracy are the two main objectives to be improved in the optimization meas-

urement of FRBCSs. However, improving these objectives is found to be difficult in most of the existing systems due to the conflicting 

issues between accuracy and interpretability. Evolutionary algorithms have been extensively used to resolve problems associated with 

multiple and often conflicting objectives. The objective of a multi- objective optimization algorithm is to define the collection of best trade- 

offs between objectives. Among multi-objective evolutionary algorithms proposed in the literature, particle swarm optimization (PSO)-

based multi-objective (MOPSO) algorithm has been cited to be the most representative. This paper presents a comparative analysis of 

Machine Learning (ML) algorithms for Fuzzy Multi-objective evolutionary algorithms (FMOEs) with WEKA Classification algorithms of 

data using8 publicly available datasets from the Knowledge Extraction based on Evolutionary Learning (KEEL) repository. FMOEs 

method is evaluated on a popular benchmark data set being used in a medical domain for evaluations. The result obtained shows that the 

FMOEs method yields an optimum solution in minimizing the trade-off between accuracy and interpretability. These findings add to a 

better understanding of the trade-offs between accuracy and interpretability in the algorithms under consideration, assisting academics and 

practitioners in picking the best algorithm for classification tasks. 
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1. Introduction 

Data mining techniques have recently been used in the medical and healthcare domains to promote public health and assist patient activities. 

Physicians frequently use statistical approaches to process massive volumes of information such as laboratory screening, diagnosis, treat-

ment, and prognosis. However, these statistical techniques are insufficient for extracting the necessary knowledge from the supplied data 

and information. This necessitates the investigation of alternate knowledge discovery (KD) methodologies in the medical and health do-

mains [1]. Many academics used Rule-based Systems in a variety of applications, including the medical area. A fuzzy rule-based system 

(FRBS) is more likely to mimic human reasoning than classical system behavior. Fuzzy sets are used to represent and manage data and 

information with non-statistical uncertainty. Furthermore, fuzzy sets allow for the use of symbolic models. The Fuzzy rule-based catego-

rization system is the most basic FRBS model (FRBCS). FRBCS design, with if-then statements as their rules, is one area of focus in this 

field of study. In comparison to other modeling methodologies, it is successful in producing good outcomes. FRBCS can generate infor-

mation from current data that can be completely utilized.  

FRBCS can be created manually by an expert or automatically based on a data set identified as a confident spectacle. Its automation can 

be viewed as an optimization challenge because it focuses on improving accuracy without taking into account the rules generated [2] [3], 

[4] is part of the FRBCS. The interpretability and accuracy are important characteristics of a classifier in some fields. Extraction of appro-

priate fuzzy rules from numeric data has been a prominent concern as part of FRBCs, as documented in the literature, where most of these 

techniques were utilized for performance enhancement in terms of prediction error with no participation of any interpretability metric. 

Other strategies, such as evolutionary algorithms (EAs), have addressed the interpretability- accuracy trade-off. [2], [5] – [8]. The applica-

tion multi-objective evolutionary optimization algorithms (MOEOAs) look to be the best option for multi-objective issues. Multi-objective 

optimizations may readily optimize several objectives, most of which are in competition with one another. [9]. In the literature, several 

multi-objective fuzzy classifications have been proposed [2], [4], [5], [7], [8] [10]. Multi-objective PSOs have been effectively recom-

mended to treat accuracy- interpretability trade-offs. In other MOEAs, a non-dominated solution has to be found in each generation and 

computational effort must be done for Pareto optimal solution. This complicated computational effort is due to less theoretical evidence to 

Pareto optimal solution. Therefore, PSO is better in many situations due to an intuitively simple representation and relatively low number 
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of adjustable parameters. In this work will present a comparative analysis of FMOEs with WEKA Classification algorithms to examine 

which are methods will tackle interpretability-accuracy trade- off and give best result.  

The paper is structured as follows: The next part provides a brief examination of the existing MOEAs for general applications, which are 

typically modified or directly used to generate FRBSs with a good interpretability-accuracy tradeoff. In addition, we provide a brief over-

view of categorization methods that have been utilized to compare their results with those of the MOEA. In part three, we present the 

approach provided in this research, followed in section four our by categorization assessment datasets. The section sixth presents the 

specifics of the obtained results and the comparisons that have been made. Section seventh concludes with some conclusions that we 

reached in this paper.  

2. Background 

2.1. Multi objective evolutionary algorithms 

Evolutionary algorithms deal with a set of possible solutions (the so-called population) at the same time, allowing the algorithm to find 

several members of the Pareto optimal set in a single run. Furthermore, they are not overly sensitive to the shape or continuity of the Pareto 

front (e.g., they can easily deal with discontinuous and concave Pareto fronts). The first hint about using evolutionary algorithms to solve 

a multi-objective problem appears in a 1967 Ph.D. thesis [5], [11]. However, no actual MOEA was developed (the multi-objective problem 

was restated as a single- objective problem and solved with a genetic algorithm). During the mid-1980s, David Schaffer is widely regarded 

as the first to design a MOEA [5], [12]. Schaffer's method, known as the Vector Evaluated Genetic Algorithm (VEGA), combines a basic 

genetic algorithm with a modified selection mechanism. VEGA, on the other hand, had a number of issues, the most serious of which was 

its inability to retain solutions with acceptable performance, perhaps above average, but not outstanding, for any of the objective functions. 

Following VEGA, the researchers created a first generation of MOEAs that were characterized by their simplicity. The main lesson learned 

was that successful MOEAs needed to combine a good mechanism for selecting non-dominated individuals (perhaps, but not necessarily, 

based on the concept of Pareto optimality) with a good mechanism for maintaining diversity (fitness sharing was a choice, but not the only 

one). The most representative MOEAs of this generation are: Nondominated Sorting Genetic Algorithm (NSGA) [13], Niched-Pareto 

Genetic Algorithm (NPGA)[14] and Multi Objective Genetic Algorithm (MOGA) [15]. When elitism became a standard mechanism, a 

second generation of MOEAs emerged. In fact, the use of elitism is a theoretical requirement for ensuring MOEA convergence. During the 

second generation, many MOEAs were proposed (which we are still living today). Most researchers will agree, however, that few of these 

approaches have been adopted as a reference or used by others. The Strength Pareto Evolutionary Algorithm 2 (SPEA2) [16] works in this 

manner and the Nondominated Sorting Genetic Algorithm II (NSGA-II)[17] can be considered the most representative MOEAs of the 

second generation, with others such as the Pareto Archived Evolution Strategy also being of interest (PAES) [18].  

2.2. Classification methods 

We used classifiers, representatives of different recognition models. These are Jrip, Part and Decision table, which are realized in the 

Waikato Environment for Knowledge Analysis (Weka) [19].  

• JRip (RIPPER): Jrip is a well-known propositional rule learning algorithm that utilizes Repeated Incremental Pruning to Produce 

Error Reduction (RIPPER). This algorithm generated a detection model comprised of a database of rules designed to identify new 

instances [20], [21].  

• PART: The supervised PART classification method employs the divide-and-conquer tactic. It creates rules recursively, deletes in-

stances affected by these rules, and repeats the process until no instances remain [20], [22].  

• Decision Table: A decision table is a programming or organizational tool for representing discrete functions. It can be viewed as a 

matrix where the upper rows specify sets of conditions and the lower rows specify sets of actions to be taken when the corresponding 

conditions are met; thus, each column, known as a rule, describes a procedure of the form if conditions, then actions. Given an 

unlabeled instance, the decision table classifier looks for exact matches in the decision table based solely on the schema features (it is 

to be noted that there may be many matching instances in the table). If there are no instances, the majority class of the decision table 

is returned; otherwise, the majority class of all instances that match is returned [23].  

3. Methodology 

3.1. A fuzzy rule-based classification systems 

In the subject of data mining, data analysts employ a variety of methods to address classification challenges. The FRBCS-based strategy is 

one of the most extensively utilized techniques for addressing classification-related challenges. Knowledge-based (KB) and rule-based (RB) 

are two of the primary components of a FRBCS. The KB component of a FRBCS is the region that stores both the RB and the database, 

whereas the rule-based component is the fuzzy reasoning method that classifies entities based on the information stored in the KB. The 

knowledge base of a fuzzy rule-based system was built using an algorithm for learning fuzzy rules. The method utilized the following set of 

P-labeled patterns: 

 

= ( , . . . ), p= {1, 2,, P}                                                                                                                                                                 

(1) 

 

Where,  is the attribute value = {1, 2 . . . n}.  

Each n attribute is represented by a collection of linguistic phrases in addition to its associated functions. Ishibuchi and Nakashima developed 

fuzzy rule-based systems as a second strategy [24]. 

 

: I  is , and  is ,  =                                                                                                                                               
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Where  is the label of the   rule, 

x = (x1. . . xn) is an n-dimensional pattern vector,  

is a fuzzy set representing a linguistic term and  

  is a class label, and  

    is the weight of rule. 

Consider xp= (xp1, xp2,..., xpn) to be the new categorization candidate pattern. L is the number of rules in the RB, M is the number of classes 

to classify, and the fuzzy reasoning approach is denoted as follows: xi  The Matching degree is the starting strength of the if-part with the 

pattern for all rules in the RB. T is utilized in the computation. 

 

μ𝐴𝑗 (𝑥𝑝) = T (μ𝐴𝑗1 (𝑥𝑝1)... μ𝐴𝑗𝑛 (𝑥𝑝𝑛)),                                                                                                                                                           

(3) 

 

Where x j= 1, 2..., L  

μ𝐴   (𝑥 ) is the degree of compatibility between the fuzzy rule R j and the input vector. Aji is the membership function of the preceding 

linguistic value A, I = 1, 2,. 𝑥𝑝. A degree of Association is employed to calculate the amount of relationship in the pattern with M classes 

based on each rule in the RB. A combination h operator is employed at this stage to tie a matching degree to a rule weight. This association 

degree only pertains to the rule's final class when utilizing the shown rule form (i.e., k = Class (Rj )).  

 

 =h (μA   (  ),RW k),                                                                                                                                                                                  

(4) 

 

k = 1. . . M, j = 1. . . L.  

In the final phase, the aggregation function that combines the positive values of the association and the soundness degree of the Pattern 

classification is applied as follows: 

 

y k= f (b jk, j =1..., L and b k j >0),                                                                                                                                                                     

(5) 

 

k=1.... M.  

To apply a function f for determining the level of system soundness, a Classification pattern is applied to each class. This function determines 

the class label corresponding to an extreme value. The function is denoted by:  

 
(𝑌1,...𝑌𝑚) = 𝑎𝑟𝑔.max(𝑌𝑘),𝑘 = 1,2,...𝑚                                                                                                                                                            (6) 

3.2. Multi-objective particle swarm optimization 

In Multi-Objective Particle Swarm Optimization (MOPSO), each non-dominant solution was referred to as the new leader when crowding 

distance was used. Although this strategy has a disadvantage in rapidly merging the leader's size, MOPSO employs the crowding factor to 

commence a discrimination principle. Based on the missing value, this concept determines which leader should be placed above the binary 

match. A selected dimension of a set of each leader is equivalent to the dimension of the population for each particle. After each generation, 

each set of leaders should be changed based on each corresponding crowding value. In situations where the size of a leader exceeds the 

maximum permissible size, only leaders with the highest crowding value are preserved. Then, each generation's remaining leaders should be 

terminated. The following equation describes the possible change in velocity vector that can occur for each generation of particles. 

 

                           
                                                                                                           (7) 

Where, 

 

,  

 

,  

 

Having updated all particles, the set of leaders must also be updated. It appears that the particles that will enter the set of leaders have the 

highest value. Whenever the leaders are updated, the general shop is also updated. Finally, the system determines the crowding values in the 

leaders set and eliminates as many leaders as feasible to prevent the process from exceeding the required size [25] The subsequent algorithm 

describes the Multi-Objective Particle Swarm Optimization technique (MOPSO). 

 

Algorithm: Multi-Objective Particle Swarm Optimization (MOPSO) 

 
Input: maxItr, dataset; 

Output: Let NonDom be a non-dominated set of repositions; Read instances from ARFF file 

Spilt instance to test and trine 

Generates a classifier based on training instance Classifies the given test instance. 

Initial population of fuzzy set 
Initialize swarm 

Locate leaders 
Send leaders to archive 

crowding (leaders) 

generation = 0 
while generation < max Generations do 

      for (i = 1 to particles) do 

Select leader, flight, mutation. 
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Evaluation, update pbest 

end for 

Update leaders 

    Send leaders to archive 

crowding (leaders) generation ++ 
end while 

Report results in the archive 

4. Classification evaluation datasets 

In the present study, eight publicly available datasets were selected from Knowledge Extraction based on Evolutionary Learning (KEEL) 

repository, a globally well-known benchmark dataset, for evaluation. The datasets have been popularly used in several studies to evaluate 

the performance of algorithms. The main characteristics of these datasets are presented in Table 1. 

 
Table 1: Data Sets Properties 

Dataset  # Variables  # Classes # Instances  

Bupa  6  2 345 

New thyroid  5  3 215 

Pima 8  2 768 
Cleveland 13 5 303 

Haberman 3 2 306 

Hert 13 2 270 
Hepatitis 4 2 155 

Wisconsin 9 2 699 

 

The datasets presented several desirable features, such as having a dissimilar number of variables from 3 to 13, and diverse sizes ranging 

from 155 to 699 patterns.  

5. Experiment setup 

In terms of performance evaluation of algorithms, the basic accuracy measure ACC (X) = Nc / Nt where Nt and Nc are the number of total 

instances and the numbers of correctly classified instances respectively. The basic measure of interpretability is the complexity, which is 

based on the number of rules, so that must be minimized. The main experiment used the cross-validation method which minimized some 

degrees of bias associated with random splitting of a given dataset into learning and test parts. The whole datasets were divided at random 

into mutually exclusive subsets having an approximately equal number of records and with similar class distributions. The learning process 

was repeated k times. After every repeat, a subset k is used as the test set, and the remaining as the learning set. In each case, the solution 

(FMOEs) as characterized by the highest accuracy for the test data and lowest interpretability was selected. The average results from k 

runs were then computed. The study applied a cross-validation method with similar 10-folds in both methods and baseline systems. Each 

data set was partitioned randomly into nine folds for the training phase and one- fold for the testing phase.  

6. Results and Discussion 

In many classification rules, algorithms are generally used to generate the classification rules. In the present section, a comparison of three 

classification techniques: PART, JRip, and Decision Table using the WEKA tool with FMOEs are presented in Table 2.  

 
Table 2: Evaluation Result 

Data set Decision Table JRip PRT FMOEs 

PIMA 
Rules : 63  
Acc: 74.48% 

Rules: 4 
Acc: 74.48% 

Rules: 13 
Acc: 74.78 % 

Rules: 3 

Acc: 

77.21% 

BUPA  
Rules: 3 

Acc: = 59.71 % 

Rules: 5 

Acc:  
67.8 % 

Rules: 5 

Acc: 64.1 % 

Rules: 4 

Acc: 
70.40% 

NEWTHYROID  
Rules: 21 

Acc: 93.4884 % 

Rules: 4 

Acc: 93.% 

Rules: 43 

Acc: 93.95 % 

Rules: 3 

Acc: 
95.8% 

HABERMAN  

Rules: 2 

Acc: 
 72.5 % 

Rules: 2 

Acc:  
73.5% 

Rules: 4 

Acc: 73.8% 

Rules: 7 

Acc: 70.9  

WISCONSIN  

Rules: 20 

Acc: 
 93.8 % 

Rules: 5 

Acc: 
 95.6% 

Rules: 11 

Acc: 94.7 % 

Rules: 10 

Acc: 
98% 

HEPATITIS  

Rules: 29 

Acc:  
68.8% 

Rules: :3 

Acc: =67.7% 
 

Rules: 8 

Acc: 71.2 % 

Rules: 4 

Acc: 
92.9% 

HERT 

Rules: 16 

Acc:  
84.8 % 

Rules: 4 

Acc: 
 77.4 % 

Rules: 24 

Acc: 73.3 % 

Rules: 11 

Acc: 
91% 

CLEVELAND  

Rules: 8 

Acc:  
54.5 % 

Rules: 1 

Acc:  
54.7 % 

Rules: 48 

Acc: 52.4 % 

Rules:33 

Acc: 5 
8.4 % 
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Results show that for accuracy and interpretability, the FMOEAs outperformed PART, JRip, and Decision most eleven datasets. For PIMA 

datasets, FMOEAs outperformed the PART, JRip and Decision Table methods in terms of interpretability and accuracy. The results show 

that the method recorded 77.21% as average accuracy and three rules as interpretability value. For the BUPA dataset, FMOEAs outper-

formed the Decision Table, PART and JRip methods in terms of accuracy and became competitive in interpretability. The results show 

that the method recorded 70.40% as average accuracy and four rules as interpretability value.  For the NEWTHYROID dataset, FMOEAs 

outperformed the PART, JRip and Decision Table methods in terms of interpretability and accuracy. The results show that the method 

recorded 95.8% as average accuracy and three rules as interpretability value. For the HABERMAN dataset, JRip outperformed the 

FMOEAs, PART and Decision Table methods in terms of interpretability and became competitive in accuracy. The results show that the 

method recorded 73.5 3  % as average accuracy and tow rules as interpretability value. For WISCONSIN datasets, FMOEAs outperformed 

the JRip, PART and Decision Table methods in terms of accuracy and JRip outperformed the FMOEAs, PART and Decision Table in 

terms of interpretability. For HEPATITIS dataset, FMOEAs outperformed the Decision Table, PART and JRip methods in terms of accu-

racy and became competitive in interpretability. The results show that the method recorded 92.9%as average accuracy and four rules as 

interpretability value. For HEART dataset, FMOEAs outperformed the JRip, PART and Decision Table methods in terms of accuracy and 

JRip outperformed the FMOEAs, PART and Decision Table in terms of interpretability. For CLEVELAND dataset, FMOEAs outper-

formed the JRip, PART and Decision Table methods in terms of accuracy and JRip outperformed the FMOEAs, PART and Decision Table 

in terms of interpretability. 

 

 
Fig. 1: Comparison of Different Algorithms in Accuracy Results. 

 

In terms of Accuracy, the results shown in Figure 1, the FMOEAs is most accurate then Decision Table, PART and JRip. In conclusion 

FMOEAs outperformed the Decision Table, PART and JRip methods in terms of accuracy and became competitive in interpretability, 

because Accuracy and Interpretability Trade-off. Which is choose most accuracy in the same time easy to understandable. 
 

 

 
Fig. 2: Comparison of Different Algorithms in Interpretability Resu 

 

In terms of Interpretability, the results shown in Figure 2, JRip had significantly lesser interpretability because of its pruning method, 

whereas Decision Table attained the maximum interpretability and PART came in second then FMOEAs. 

7. Conclusion 

Multi-objective EA is applied to find an optimal solution rather than the single objective functions that can provide the only single optimal 

solution. In this work, we present a comparative analysis of FMOEs (optimal solution) with WEKA (single objective) classification Algo-

rithms to trade-off solution to the problem of accuracy and interpretability on the medical data sets. We have determined the set of solutions 

that are non- determinant in nature rule-based classification format that have different stages of this trade-off. The result recorded significant 

improvement in both accuracy and interpretability with FMOEs compared to the WEKA classification Algorithm in the result table.  
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