

Copyright ©2018 Sahab Dheyaa Mohammed, Prof. Dr. Abdul Monem S. Rahma. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

International Journal of Engineering &Technology, 7 (4) (2018) 6951-6955

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

doi: 10.14419/ijet.v7i4.22068

Research paper

Technique for querying over an encrypted database

Sahab Dheyaa Mohammed 1 *, Prof. Dr. Abdul Monem S. Rahma 2

1 University of Information Technology and Communications, Baghdad, Iraq
2 University of Technology ,Department of Computer Science , Baghdad, Iraq

*Corresponding author E-mail: sahab7dia@yahoo.com

Abstract

The increase in the amount of data in encrypted databases has caused problems in data processing and retrieval. In conventional method,

difficulties in querying an encrypted database are experienced because it is time consuming and requires large computations when de-

signing encryption algorithms or creating indexing tables that expose non-authorized disclosure. In this study, we proposed a new tech-

nique for querying encrypted databases. This technique allows legitimate users to immediately query without decrypting all the encryp-

tion records. In this method, index fields were created by using the hash function, and new approaches of encoding and hiding data in-

formation were used. Thus, the query can be used without encryptions. Hence, the index values will not be exposed to speculation by

outside attackers when the index table has been detected. The proposed technique could provide high data security and consume lesser

time when retrieving records compared with traditional methods.

Keywords: Encryption Database; Encoding Data; Indexing Techniques; Index Field Generation; Query Processing.

1. Introduction

Data are critical resources that should be securely stored for the

efficient operation of a company. Companies typically store data

in secure databases. However, this practice poses a challenge for

administrators in creating a data protection strategy against intrud-

ers. Cryptography is a critical matter in database security. Unlike

encryption, conventional security techniques cannot provide ade-

quate data security. Data encryption introduces an important di-

mension in security and prevents users from obtaining data illegal-

ly and stealing database contents, which are saved in storage me-

dia, such as CD-ROM, tapes and disks [1].Organisation databases

include sensitive data that can be unprotected from attacks and

misuse [2]. Many techniques, such as encryption and other ste-

ganography methods, can solve this type of problem.

Steganography is a process that involves hiding a message in an

appropriate carrier; for example, an image or an audio file [3].

Cryptography provides important database security. Unlike en-

cryption techniques, conventional security techniques cannot pro-

vide sufficient data security. Data encryption introduces a signifi-

cant dimension of security that prevents users from gaining illegal

access and stealing data from the database when saved in storage

mediums (e.g. CD-ROM, tapes and disks). Nevertheless, encryp-

tion safely assists in system execution because querying cannot be

directly performed in the structural query language (SQL) of an

encrypted database. SQL query can only work when encrypted

data are decrypted. This entire process requires a certain amount

of processing time. Although these mechanisms somehow restrict

their applicability, several mechanisms have been suggested to

solve this performance deterioration problem [4].

2. Related work

Providing security is an additional problem for databases. Thus,

the encryption techniques of database management systems

(DBMSs) can be used. However, despite the high security provid-

ed by encryption, issues, such as reduced system efficiency caused

by encryption, still exist.

Reference [5] suggested a private database query protocol for

seeking encrypted records by using an equality test algorithm on

the encrypted databases. This suggestion aims to find and execute

an effective form of search condition at each fully homomorphic

encryption (FHE) cipher-text by using the algorithm of an equality

test.

In [6], an indexing technique for searching the range queries was

suggested. However, this technique is only helpful for numerical

data and not for character data.

Reference [7] suggested a method for searching queries on the

encryption database by using a homomorphic encryption tech-

nique based on the ideas of Gandhi’s method. This method has

two phases. In the first phase, homomorphic query can be used

with a ring-based FHE. In the second phase, we use the homo-

morphic query to build a keyword search method in the smart grid.

Reference [8] suggested dividing the client’s range of attributes

into a set of intervals. The conformity between the interval and the

original values is preserved on the client’s side, whereas encrypted

tables with interval information are stored in the database. Data

are efficiently queried by mapping the original range and equiva-

lent query values with the corresponding interval values.

 Reference [9] proposed the creation of a B+-tree with the

plaintext values, and then each B+-tree node was encrypted and

stored at an unauthenticated DBMS. The main B+-tree was then

performed at the unauthenticated DBMS as a table with two at-

tributes, namely, a node ID, which is mechanically assigned by the

system upon insertion, and the encrypted node content. This tech-

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

6952 International Journal of Engineering & Technology

nique has both advantages and disadvantages. An advantage is that

the content of B+ -tree is invisible to an untrusted database service

provider, whereas the disadvantage is that it involves considerable

data processing on client machines.

3. Hash table

A hash function is a mathematical algorithm that converts a large

set of data into smaller ones. The retrieved values are usually inte-

gers that act as a pointer to a set of data. These values are denoted

as hash values. The difference between hash and compression

values is that compression can be decompressed, and the data can

be restored to its original size. However, the opposite is true for

hash values. Hash functions are often used to develop a table or to

search for items within a database and detect similar rows in a

large table. These functions are also used in cryptography. A cryp-

tographic hash function easily allows the user to verify a certain

input data map onto a given hash value and confirm the integrity

of transferring data. Moreover, such functions are also the build-

ing blocks for HMACs, which provide message authentication.

The hash function assigns a key or two to the hash value itself. In

many applications, a collision problem exists amongst hash values.

These problems should be reduced. Hash functions are primarily

used in a hash table to rapidly determine where the record can be

located. This function is used to transform the search key into an

index that provides the location in the hash table, where the corre-

sponding record should be stored. For this reason, each part of the

hash table is often called a bucket, and hash values are called

bucket indexes. Therefore, each bucket of a hash table is associat-

ed with a set of records instead of only one [10] [11].

4. Environment of the proposed work

This method proposes the construction of an SQL query to per-

form encryption database and retrieve records safely. The pro-

posed technique consists of the proxy server of an enterprise, and

the clients are represented as users. The proxy server is the centre

of communication between the client and the remote database. Fig.

1 displays an overview of the query scheme of an encrypted data-

base.

Fig. 1: Scheme of Querying Encrypted Database.

No direct communication occurs between the remote database and

the clients. All the operations of the system (e.g. encoding, en-

cryption, information hiding, decryption and building query) are

only executed in the proxy server. The proxy server receives

building queries from the clients and then forwards these queries

to the database on a remote server. The proxy server creates the

indexed fields in an encryption table by using hash functions and

encoded values.

In other words, the proxy manages the communication between

the database applications and the encrypted remote database. The

clients represent the users who are authorised to view and query

their information from the remote database via the proxy server.

The remote database is the database server used to store encryp-

tion data. The database is isolated from any user, except the proxy

server. The proposed system does not store any encryption data at

the end of the system (users) because the encryption data is stored

in the remote database server and only confined to provide a par-

ticular service to the users.

4.1. Encoded operation

This study suggested a technique for querying a remote encrypted

database by using an index mechanism. Before applying the pro-

posed technique, plaintext must be encoded in polynomial num-

bers of GF () by using an encoded dictionary method to provide

an additional level of security when the proposed encryption ap-

proach is broken and decrease the embedding capacity when the

random matrix of the proposed information hiding method is ap-

plied.

In the encoding operation, matching is performed every two en-

coded bytes with any of one word, one number or one symbol in

the original database. The dictionary capacity contains up to

65,536 pairs of bytes, which are dynamically or manually stored.

All data in the DB records are encoded in binary numbers as a

form of polynomial numbers of GF (). Each word, number

(0……9) and symbol (#, $, /, () and *) is assigned to two bytes,

and each byte represents one numeric value (0……255). The dic-

tionary includes words, numbers and symbols that are dynamically

added by allowing the accumulation of new words or deletion of

old unused words. Furthermore, the words that previously entered

manually are preserved. Table 1 presents an example of an encod-

ing dictionary of data.

Table 1: Encoding Sensitive Data

4.2. Information hiding operation

After the original data are encoded, such data are gathered as rec-

ords in the temporary table, which has the same structure as the

database. Then, the records will be encrypted by using the data

encryption standard (DES) algorithm

The DES algorithm was elaborated by IBM in the early 1970s.

This symmetric technique works on a 16-round Feistel cipher,

which is a block of input length that encrypts 64 bits of plaintext

bit-string, and the same key is used for decryption and encryption.

The encryption records are embedded into a random matrix (256 ×

256) by using a linear equation. The elements of this matrix are

polynomials in GF ()

The procedure of embedding the encrypted record into a row of

random matrix begins when encoded, encrypted records and ran-

dom matrixes are available.

Embedding Equation (1) is used to merge an encrypted record of

the database, in which one of the rows is randomly selected from

the matrix. The results are replaced into cover file with the same

location of the elements.

International Journal of Engineering & Technology 6953

E(x) = (ax + b) mod m (1)

Where:

x: encrypted byte value of the record.

m: an irreducible polynomial of GF () , + + + x + 1) .

a: element of cover-file (z) .

b: secret key.

E(x): embedded element for sensitive data in the cover

Each row includes one record, row ID field and the indexed fields.

The rows are gathered in a temporary file until sending the rows

and stored in the DB table Fig. 2 show embedded process in the

row of random matrix.

Fig. 2: Flow Chart Illustrating the Embedding Process.

5. Proposed querying method

Databases that use traditional encryption methods preserve data at

the disk. The retrieval process involves decrypting the entire or a

portion of the database to detect the data queried by a user. Thus,

this process is time consuming.

Accordingly, we suggested a technique to overcome the draw-

backs of traditional encryption methods in database systems. This

technique processes SQL queries over encrypted data on a remote

database without having to decrypt the data. Moreover, data de-

cryption is only performed at the proxy site. This technique con-

tains two phases. The first phase creates the index field of each

record before sending it to the remote database.

The second phase builds the SQL query in the proxy server to be

retrieved by the required records.

5.1. Construction of indexed fields

In this method, the index values are calculated and added as the

pointer for each record before sending it to the database server.

The index values are calculated on the basis of the combination of

four element values via the XOR operation of the hash function

(Equation 2). The first element represents the encoded value of the

attribute (key), which is available in the encoding table. The three

other elements correspond to the randomly selected values. Equa-

tion (2) is defined as follows:

= ⊕ ⊕ ⊕

Where

 : The new value of index field.

 : The encoded value of the attribute (key).

 : is the element value that select randomly from the record.

i: is a polynomial number of GF () (0…….255)

To generate the indexing fields of the record, each word in the

attribute (key) that is used in all the queries is added to the encod-

ed table before encryption. The record elements represent the fea-

tures that distinguish the record. Thus, the index fields are calcu-

lated by using the hash function to combine these randomly se-

lected specific elements (columns). The results were then mapped

into the index fields, where each value in the index is indicated to

the specific record. The following example shows the calculation

of the index fields.

Example

Compute index fields F257 and F258 of field F0 and F1 (Mo-

hamed) in the 60001st row of Table 2 We assume that the encoded

word ‘Mohammed’ in Table 3 of the database table is (102) and

(57), and we select the values of files f4, f23, f66, f79, f213 and

f244.

Table 2: Of Encryption Database Table

Table 3: Temporary Database Table

Sol.

From the equation (2) = ⊕ ⊕ ⊕ the results of values of

F257, F258 are :

F257= 102 ⊕ 164 ⊕246 ⊕226 = 32

F258= 57 ⊕ 136⊕ 126 ⊕ 238 = 33

F257 = 32

F258 = 33

6954 International Journal of Engineering & Technology

5.2. Construction of SQL query

The query building inside the proxy server includes all elements of

the record values that contribute to achieving the index (record

indicators). The index values represent the array of record ele-

ments compressed by the hash function and encoding word of the

attribute (key) available from the encoding table to increase safety

and prevent attackers from speculating the index values.

Thus, when the SQL query is executed on the database table, it

begins from the physical start of the table and continues with each

record in the table. If a record matches the criterion, then such

record will be included in the results. The structure of the encrypt-

ed DB is based on the fact that each byte in the record is located

under one field. Thus, the pointers of each record may contain

more than one field (byte) based on the number of bytes that rep-

resent the values of the attribute (key).

When an authorized user wants to query some records in the en-

crypted database table, he sends a query via the SQL server appli-

cation to the proxy server, where the proxy server obtains the en-

coded word as a pair of bytes from the encoding table. The proxy

server that builds the query sends it to the remote encrypted data-

base, and then the searching mechanism begins. When the search-

ing mechanism finds that the result matches the index field values,

all the records that satisfy the user query are returned to the proxy

server and decrypted before sending it to the user. The querying

operation of the proposed algorithm is illustrated in the following

example.

Example:

From the temporary database Table 2. Suppose a user need re-

trieves all records has the First Name word “Mohammad” in the

encrypted database in Table 3.

SELECT #

FROM Encrypted Data Table

WHERE Name = Mohammed

The proposed algorithm interprets this query in the proxy server

by performing an encoding mechanism where the word “Moham-

med” is encoded as a pair of bytes (102), (57) and transforms it as

follows:

SELECT #

FROM Encrypted Data Table

WHERE 102 ⊕f4⊕ f66 ⊕ f213 = f257 AND 57 ⊕f23

⊕f79⊕f244 = f258

F257= 102 ⊕ 164 ⊕246 ⊕226 = 32

F258= 57 ⊕ 136 ⊕ 126 ⊕ 238 = 33

In this example, the user attempts to retrieve all records with the

name ‘Mohammed’. The proposed algorithm performs two steps.

Firstly, in the encoding table, the binary value that corresponds to

‘Mohammed’ is searched. Secondly, a search is performed at ran-

domly selected specific columns in the encrypted data table (f4,

f66, f213, f23, f79 and 244) to compute the result of the index via

the hash function. When the searching mechanism verifies that the

result matches the values of the index field of the attribute name

(F257, f258), all the records that correspond to the user’s query

are returned to the proxy server and decrypted before it is sent to

the user.

5.2.1. Algorithmic outline

The proposed query algorithm is presented as follows:

1) The user presents a query to the proxy server.

2) The requested encoded word or number is fetched from the

encoding table.

3) The query is built.

4) The query is sent to the encryption database table.

5) The SQL query is performed the searching operation on en-

crypted records.

 If (the search does not match all the values of the index

columns)

 Go to step 9

 Else Go to step 6

6) The record has a matching value as the index, so it re-

trieved.

7) A proxy server decrypts all required records.

8) The requested data are sent to the client applications,

9) Go to step10.

10) “Search is unsuccessful”.

11) Exit.

6. Results and testing

The proposed algorithm is evaluated on an information system

database. The encryption database table includes 1,000,000 rec-

ords for testing. In practice, the retrieval of these records is gener-

ally fast when the large database table is divided into smaller sub-

tables. Moreover, the proposed method is suitable when a large

amount of data is retrieved. Thus, the proposed algorithm is

prompt when the table size is small, but takes a considerable

amount of time when the database table is large. Figure 3 shows

the time consumed by the proposed method, as compared with the

conventional methods of different data samples.

Fig. 3: Comparison Analysis of Querying Over an Encrypted Database.

This figure shows that our proposed technique consumes less time

during record retrieval than conventional systems when the data

size is small. Such problem can be addressed by partitioning the

large tables into different sub-tables to decrease the time con-

sumed in retrieving records.

7. Conclusion

This study proposed an effective algorithm for querying encrypted

data. The data retrieval process is the main objective of this re-

search and not the encryption process. Thus, a simple encryption

operation was conducted to perform database encryption using the

retrieval method from the encrypted database. In conventional

systems, the query process from a large encrypted database takes a

long time because the database needs to be decrypted entirely or

partially before the results are sent to the client .

The proposed system improved the performance of the retrieval

algorithm by decreasing the time consumed when sub-tables were

used. The proposed system used the encoded query without need-

ing an encryption query to match the encrypted data and only

acquired the records requested by the user. The proposed system

addressed the problem in conventional systems by retrieving the

required encrypted query through indexing query and by returning

the original record requests to the users.

International Journal of Engineering & Technology 6955

References

[1] M. Sharma, A. Chaudhary, S. Kumar. "Query Processing Perfor-

mance and Searching over Encrypted Data by using an Efficient
Algorithm" International Journal of Computer Applications (0975 –

8887) Volume 62– No.10, January 2013.

https://doi.org/10.5120/10114-4781.
[2] Kaur, Gurleen. "A Review on Database Security." International

Journal of Engineering and Management Research (IJEMR) 7.3

(2017): 269-272.
[3] Morkel,Tayana, Jan HP Eloff, and Martin S. Olivier. "An overview

of image steganography." Information Security South Africa
Conference ISSA. 2005.

[4] Sharma, Manish, Atul Chaudhary, and Santosh Kumar. "Query

processing performance and searching over encrypted data by
using an efficient algorithm." arXiv preprint arXiv:1308.4687

(2013). https://doi.org/10.5120/10114-4781.

[5] J. H. Cheon, M. Kim, and M. Kim. Optimized search-and-compute
circuits and their application to query evaluation on encrypted data.

IEEE Trans. Information Forensics and Security, 11(1):188–199,

2016. https://doi.org/10.1109/TIFS.2015.2483486.

[6] J. Li and E.R. Omiecinski, “Efficiency and Security Trade-Off in

Supporting Range Queries on Encrypted Databases,” Technical Re-

port, pp. 69-83, 2005. https://doi.org/10.1007/11535706_6.
[7] P. Sudharaka. "Homomorphic encryption and database query priva-

cy" Diss. Memorial University of Newfoundland, 2016.

[8] H. Hacigümüs, B.R.I., C. Li and S. Mehrotra, “Executing SQL over
encrypted data in Database-Service-Provider Model” ACM SIG-

MOD Madison, Wisconsin, USA, pp. 216-227, June 2002.

https://doi.org/10.1145/564691.564717.
[9] E. Damiani, S. De Capitani Vimercati, Sushil Ja jodia,

S.Paraboschi, and P.Samarati, "Balancing confidentiality and effi-

ciency in untrusted relational dbmss", In Proceedings of CCS'03,
pages 93{102, 2003.]. https://doi.org/10.1145/948109.948124.

[10] Wikipedia, the free encyclopedia that anyone can edit

http://en.wikipedia.org/wiki/Hash_table , an article on Hash table
[11] Alhanjouri, Mohammed A., A. L. Derawi, and M. Ayman. "A New

Method of Query over Encrypted Data in Database using Hash

Map." A New Method of Query over Encrypted Data in Database
using Hash Map 41.4 (2012). https://doi.org/10.5120/5533-7580.

https://doi.org/10.5120/10114-4781
https://doi.org/10.5120/10114-4781
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1007/11535706_6
https://doi.org/10.1145/564691.564717
https://doi.org/10.1145/948109.948124
http://en.wikipedia.org/wiki/Hash_table
https://doi.org/10.5120/5533-7580

