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Abstract 

 
The deterministic nature of finite element method for computational analysis is limited in describing the behaviour of actual processes 

which normally have certain degrees of uncertainties and deviations. Nevertheless, uncertainty factors can be incorporated into an FEM 

analysis using statistical approach to closely simulate real-life operating conditions. However, integrating stochastic parameters into 

commercial finite element solvers can be problematic, requiring the need for suitable interfacing using customized subroutine codes and 

implementation strategies. In this paper, a Monte Carlo approach was proposed for the incorporation of stochastic input parameter in a 

finite element analysis simulation of a laser welding process. A linear congruential generator together with a Box-Muller algorithm were 

used to generate normally distributed random numbers. The algorithms, written in Fortran77, was verified to be able to generate a gaussian 

distribution for 100, 1000, and 10,000 random numbers. The algorithms were then integrated into a user subroutine in MSC MARC/Mentat 

for the generation of variable laser power input values. A butt-welding simulation was executed using stochastic laser power input of, P 

having a mean, µ = 300 W, and standard deviation,  = 10 W. A simulation with constant power input P= 300 W was also conducted for 

comparison. The results show that the stochastic input values resulted in a minor increase in the calculated surface temperature of the 

welded plates, which was probably due to the increased laser power at several time steps in the simulation. The findings and methods in 

this work can serve as a guideline for the incorporation of stochastic parameter inputs into finite element analysis simulation. 
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1. Introduction 
 

The finite element method (FEM) is a widely accepted numerical 

method for solving problems in science and engineering. Among its 

application is in structural analysis, heat transfer, fluid mechanics 

and electromagnetic fields. However, FEM is deterministic and is 

thus limited to describe the general characteristics of a system. It 

cannot directly study a system reliably where there exists some 

degree of uncertainty. The classic FEM has been combined with 

other methods to create a new type of analysis to study systems with 

random variation and/or uncertainty in parameters. Statistical 

methods allow the effect of uncertainty and variability to be 

incorporated into finite element models. 

Stochastic approach has been used in FEM for structure reliability 

analysis [1], fatigue crack growth analysis [2], microstructure 

evolution [3] and vibrational analysis [4], among others. A 

summary of the practical applications of the stochastic finite 

element method has been reviewed by Mena et al. (2016) [5]. 

However, stochastic methods must be able to be interfaced with 

widely used commercial finite element solvers for it to be widely 

accepted. Thus, this paper presents a strategy in implementing a 

Monte Carlo approach into the FEA simulation of a laser welding 

process. 

 

2. Monte Carlo simulation 
 
Stochastic Finite Element Methods (SFEM) merges the Monte 

Carlo simulation technique with the deterministic FEM. Monte 

Carlo simulation (MCS) is the most general and direct approach for 

SFEM. MCS uses probability distributions such as normal, 

lognormal, uniform, and triangular to model a stochastic or random 

input variable. Since MCS rely mostly on randomized number 

inputs, it is necessary to have a source of good random numbers. 

These numbers can be obtained from a table of random numbers, 

true-random number generators (TRNG) or pseudo-random 

number generators (PRNG). In computing, PRNG are generally the 

preferred choice, as a software implementation is more reliable, 

easier to integrate to other programs, and because they can be 

programmed, they can generate sequences of random numbers in a 

predictable manner, and the statistical properties of these pseudo- 

random numbers are also predictable. The algorithm is usually 

initialized with a number as the seed, and the resulting sequence of 

numbers depends on this seed. The main disadvantage of PRNG 

algorithm is that the random number sequence is periodic. 

http://creativecommons.org/licenses/by/3.0/
mailto:E-mail:ibnjamaludin@um.edu.my


1575 International Journal of Engineering & Technology 

 
However, most algorithms have very long period of repeatability, 

which is sufficient for most applications. 

 

2.1. Generation of random numbers using PRNG 

 

2.1.1 Linear Congruential Generators (LCG) 

 
For Monte Carlo analyses, the most widely used PRNG are linear 

congruential generators (LCGs). These are simple random number 

generators with a general form shown in (1) [6]. 

 

rn + 1 = a × rn + c (mod m),     n=0,1,2,….                    (1) 

 

where: 

 r0 is a seed. 

 r1, r2, r3 are the random numbers. 

 a, c, m are positive constants. 

The selection of the values for a, c, m and r0 drastically affects the 

statistical properties and the periodic length of the sequence. The 

random integers, rn, produced would be uniformly distributed in (0, 

m-1). To return a value between 0 to 1, the integer rn can be 

converted using equation (2) 

                                                                 (2) 

where: 

 Rn is the random number between 0 and 1 

 rn is the random number generated in eq. 1 

 m is the positive constant from eq. 1 

 

It is noted that the number generated is uniformly distributed. 

However, for many measured real-life values, the normal (or 

gaussian) distribution is more applicable.  

 

2.1.2 Box-Muller algorithm 

 
Normal random variable, N (0,1) can be obtained from the sequence 

of uniform random variables on (0,1). There are several different 

methods suggested in the literature to achieve this.  One such 

method is by using the Box-Muller algorithm, introduced by Box-

Muller in 1958. It is among the easiest to implement, although it 

can be numerically taxing and may not be the most efficient [7].   

The algorithm is based on the transformation (u, v) to (x, y) given 

by equations (3) and (4), where u and v standard uniformly 

distributed random variables between 0 and 1. 

 

 
 

This algorithm requires two uniform variables to generate a single 

standard normal variable.  

Thus, the strategy for generating a normally distributed random 

numbers is to first use the LCG to generate uniformly distributed 

random numbers and then to feed these numbers as input data into 

the Box-Muller algorithm.  

3. Methodology 

In this study, a butt welding of C15 carbon steel using laser welding 

was modelled and simulated in FEM. The simulation was 

conducted in MSC MARC/Mentat, a general-purpose, nonlinear 

FEA commercial software. The software has a subroutine feature 

which enables the user to embed customized codes, written in 

Fortran77, to expand the capability of the program.  

 

 

 

3.1. FEM model geometry 

 
The geometry and boundary conditions of the weld configuration is 

modelled directly in MSC MARC/Mentat. Figure 1 shows the 

meshed geometries of the arranged C15 steel plates on the work 

table and the laser welding direction.  

 

 
Fig. 1: Meshed geometries of C15 steel plate specimens arranged in 

buttweld configuration, shown with dimensional values and welding 
direction. 

 

3.2. User subroutine 

 
As MSC MARC/Mentat uses Fortran77 in its subroutine, it does not 

have its own built-in random number generator. Suitable PRNG 

algorithm is therefore required to be incorporated in the user 

subroutine. Having the ability to code the PRNG algorithm gives 

the flexibility in determining the desired distribution characteristics 

of the random number generated. 

 

To review this Monte Carlo approach, the PRNG algorithm is first 

implemented in a general Fortran77 program to generate the 

variability in the power output parameter that follows a normal 

distribution. The program was tested to generate a sequence of 

random numbers that fulfil the required stochastic processing 

parameter (laser power). Figures 2, 3 and 4 shows the output of the 

program for 100, 1000, and 10,000 random numbers. 
 

 
Fig. 2: Distribution of random numbers generated for N=100, µ (laser 

power) = 300 and  = 10. 

𝑅𝑛 =
𝑟𝑛

𝑚
 ,     n= 1,2,… 

(3) 
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Fig. 3: Distribution of random numbers generated for N=1,000, µ (laser 

power) = 300 and  = 10. 

 

 
Fig. 4: Distribution of random numbers generated for N=10,000, µ (laser 

power) = 300 and  = 10. 

 

Once the algorithm was verified, it was incorporated into the 

MARC user subroutine. Figure 5 shows a flow chart of the 

stochastic algorithm implemented in the subroutine. 

 

 
Fig. 5: Flow chart of the implementation of the PRNG algorithm into 

MSC.MARC/Mentat user subroutine. 

 

The laser weld simulation was carried out using MSC.MARC. The 

simulation parameters are shown in Table 1. 

Table 1: Parameters for laser weld simulations 

Parameters 

Model 

Normal  

(Deterministic) 

Monte Carlo  

(Stochastic) 

Welding speed 5 mm/s 5 mm/s 

Heat source model Conical Conical 

Laser Power 300 W µ= 300W,  =10 

Plate thickness 2 mm 2 mm 

Plate material C15 steel C15 Steel 

Time step 0.1 s 0.1 s 

Total simulation time 10 s 10 s 

 

4. Results and discussions 
 
Figure 6 shows the Monte Carlo output of the laser welding power 

during the simulation run of 10 s. It shows that the power values of 

the laser were varied from 275W to 320W at each time steps (0.1 s) 

of the simulation. This range is within the required distribution for 

µ (laser power) = 300 and  = 10. 

 

 
Fig. 6: Monte Carlo output of the laser welding power for laser welding 

simulation run (timestep = 0.1 s ) 

 

Figure 7 shows a comparison of the temperature distribution 

between the normal (deterministic) and the Monte Carlo finite 

element simulation results at time, t=2.3 seconds. Small observable 

differences in the results of the Monte Carlo model can be seen, 

where the temperature was higher towards the tail end of the weld 

path. This can be attributed to the increased power input over 300 

W in the Monte Carlo implementation.  

Due to the heavy computational load of the simulation, the meshed 

and model has been kept to a minimal to demonstrate the feasibility 

of the stochastic implementation. As shown in Figures 2 – 4, as the 

number of random number generated increases, the better is the fit 

of the data to the desired distribution. This can be implemented for 

finely meshed and full or life-sized models.  

  
Fig 7: Comparison of temperature distribution on the welded plates at t=2.3 

s for a) the normal and b) the Monte Carlo models.  
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It is noted that the random numbers generated follows a known 

sequence, based on the selected algorithm, and a truly random 

number generation is not obtained. This can be overcome by 

incorporating dynamic coefficients into the algorithm, such as those 

based on the time and date of the simulation execution. For 

example, the code shown in (4), can be incorporated into the 

Fortran77 subroutine to modify the seed values each time the 

simulation is executed. 

 

call date_and_time(b(1),b(2),b(3),date_time) 

seed =date_time(7)*0.001*seed        (4) 

power_random = normal ( mu, sigma, seed ) 

return 

 
However truly random conditions are not always ideal for 

computational analysis. In general, a controllable and repeatable 

randomness is more desirable, especially in computational 

simulation, where iterative runs are the norm. 

 

5. Conclusion  

 
It has been demonstrated that stochastic processing parameters can 

be implemented in an FEA simulation run. In this simulation of an 

autogenous butt weld of two C15 carbon steel plates using low 

power laser, a Monte Carlo approach was used to randomize the 

input processing parameter of the laser power. A small difference 

was observed in the temperature distribution on the plate during 

welding, with the stochastic model exhibiting a slightly higher plate 

temperature towards the tail end of the weld path.  

 

Although the observable difference between the results for the 

stochastic and the normal simulation run is minor, it should be noted 

that the model geometry is small, and the simulation time step is 

limited to 100 steps. It is anticipated that a noticeable difference 

would be more observable for large or life-sized specimens. 

Nevertheless, this study has demonstrated the applicability of 

incorporating stochastic variables into an FEA simulation, which 

can be extended to almost any input parameters, to closely resemble 

real-world conditions. 
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