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Abstract 

 
A new and more general type of repair, called the ‘GPP repair’, is applied in this study, which is defined base on the Generalized Polya 

Process and it is more close to practical situations than the ‘minimal repair’. Under the GPP repair assumption, the future reliability 

performance of a system becomes worse and worse as the number of system failures occurred in the past increases. Cost model is 

developed and the corresponding optimal replacement age is derived such that the long-run expected cost rate is minimized. Structural 

properties of the optimal replacement age for the GPP repairable system are obtained.  
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1. Introduction 

Many works focused on the system subject to shocks which cause 

system failures, most of them modeled the shocks as a non-

homogeneous Poisson process (NHPP). Note that the NHPP 

shocks only depend on time (i.e., the age of the operating system), 

but not on the number of failures. However, many practical 

systems deteriorate with time (age) as well as the number of 

repairable failures. To incorporate this feature, it is necessary to 

model the shocks by a more suitable counting process (point 

process). In addition, if the failure process of a system follows the 

NHPP, it implies that the repair type on each failure is a minimal 

repair. ‘Minimal repair’ means that the state of the system after 

the repair is restored to the state it had prior to the failure (i.e., as-

bad-as-old condition). In other words, after a minimal repair 

action, the failure rate function of the product remains unchanged. 

Although ‘minimal repair’ has many advantages in the 

maintenance optimization and model development, it also has 

practical limitations. For example, when a component in a system 

fails, this may lead to a more hostile working environment through 

increased pressure, temperature, humidity, etc., causing 

instantaneous stress or damage to the adjacent non-failed 

components. It eventually results in the system degradation, hence 

increasing the level of the system failure rate function. As a result, 

a new repair type, which is ‘worse-than-minimal repair’, seems 

more close to real situations. 

A new counting process suggested in Konno (2010), called the 

‘Generalized Polya Process (GPP)’, is characterized by Cha 

(2014), and its definition is stated below: 

Definition 1. Generalized Polya Process (GPP) 

A counting process {N(t), t  0} is called the Generalized Polya 

Process (GPP) with the set of parameters ((t), , ),   0,   0, 

if (i) N(0) = 0 and (ii) t = ( N(t−) + )(t). 
In the Definition 1, the (t) is the intensity function of the 

counting process, N(t−) is the number of point event in [0, t), and 

the t is the stochastic intensity (the intensity process) which is 

used to mathematically describe a point process. The specific 

definition of t is presented in (1) of Cha (2014) and Lee & Cha 

(2016). It is clear that the GPP with ((t),  = 0,  = 1) reduces 

to the NHPP with the intensity function (t) and, accordingly, the 

GPP can be understood as a generalized version of the NHPP. 

Based on the GPP, Lee & Cha (2016) further defined a new type 

of repair which is called the ‘GPP repair’. Let {N(t), t  0} as the 

failure process of a system whose failure rate r(t) undergoes a 

new type of repair upon each failure and the duration of repair is 

negligible. Thus N(t) can be interpreted as the total number of 

failures (repairs) in [0, t).  

Definition 2. The GPP repair 

For a system with its failure rate r(t), a repair type is called the 

‘GPP repair’ with parameter   if {N(t), t  0} is the GPP with 

the parameter set ((t), , 1). 

Under the GPP repair process, the corresponding stochastic 

intensity is specified as t = ( N(t−) + 1)r(t), and the parameter 

 determines the ‘degree of repair’. Obviously,  = 0 corresponds 

to the minimal repair and  > 0 implies that the repair is worse-

than-minimal repair. As   increases, the corresponding repair 

becomes worse and worse.  

Figure 1 shows the stochastic intensities of the GPP repair process 

with r(t) = 0.05t2+0.1 for  = 0, 0.3 and 0.5, and in which the 

system failures occurred at the points where “” is marked. As 

shown in the figure, when  = 0 (minimal repair process) the 

stochastic intensity is just given by the fixed failure rate r(t), 

which is not affected by the failure history. On the other hand, 

when  > 0, the stochastic intensity jumps at each failure point; 

thus, under the GPP repair process, after each failure, the state of 

the system becomes worse than it was before the failure. 
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Figure 1: The stochastic intensities of the GPP repair processes. 

 

Based on the above descriptions of the practicality of GPP repair 

and the demonstration of the mathematical characteristics of the 

model, it can be realized that the GPP repair process has a failure 

rate which depends on both the system’s age and the system’s 

failure history, and this study believes that it is worth applying the 

GPP repair model to the traditional age-replacement policy for a 

system subject to shocks. Thus, a maintenance model with the 

GPP shocks is a generalization of the existing models and can be 

applied in production, insurance, epidemiology, and load-sharing 

systems. 

2. General Model Formulation 

Suppose a system is subject to shocks that arrive according to a 

counting process {N(t), t  0} with intensity function (t) and the 

mean value function (t) where t is the age of the system. As a 

shock occurs, it results the system in one of the two types of 

failures: type I failure is a minor failure, which occurs with 

probability q and can be corrected by a GPP repair; type II failure 

is a major failure, which occurs with probability p=1−q and the 

system has to be replaced. The replacement policy is that the 

system is replaced at first type II failure or at age (time) T, 

whichever occurs first. Assume the distribution of the lifetime of 

the system is proper, i.e., () = , and without loss of 

generality that limt→ (t) > 0. After a replacement, the shock 

process resets to 0. The repair and replacement process is repeated 

again and again. 

Let c2 denote the cost of replacement at time T, and c3 denote the 

cost of replacement at the first type II failure. It is reasonable to 

assume that c2  c3 because the cost for a corrective replacement is 

usually more expensive than the cost for a preventive replacement. 

The cost of performing a GPP repair is c1; all failures are instantly 

detected and repaired.  

Let *Yi denote the length of the i-th successive replacement cycle 

for i = 1, 2, …, *Ri denote the operational cost over the cycle *Yi, 

thus {(*Yi, *Ri)} constitutes a renewal reward process. If D(t) 

denote the expected cost of operating the system over time 

interval [0, t], then it is well-known that limt→ D(t)/t = 
E(*Ri)/E(*Yi) and we denote the right-hand side by C(T; p).  

In the example 1 of Cha (2014), it stated that if an event from the 

GPP occurs at time t, then independently of all else, it is classified 

as being a type I event with probability q(t) and a type II event 

with probability p(t)=1−q(t). Let Ni(t), i = 1, 2, represent the 

number of type i events that occur by time t, thus by using the 

formulation results that derived in Cha (2014), we can get the 

following results 

 

, 

and 

. 

 

It can be seen that the distribution of follows a negative 

binomial distribution and thus  

 
and  

. 

Now let Y1 denote the waiting time until the first type II failure, 

then base on the results presented above, the survival function 

of Y1 is 

 

 

,                             

(1) 

 

and for our model we have 

 
thus the expected length of a replacement cycle is given by 

 

 

                   
.(2) 

Next, the operational cost over the replacement cycle *Y1 can be 

expressed as 

 

,                                     

(3) 

where Si is the arrive time of i-th type I failure and IA(x) is the 

indicator function of the set A such that 

 
Thus by (3), the expected operational cost over the cycle *R1 is 
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Therefore, for the infinite-horizon case, we want to obtain the 

optimal T which minimizes 

,                                                       (5) 

 

the total expected long-run cost per unit time 

3. Optimization 

Now we want to derive the optimal age-replacement policy for 

a system that subject to a GPP repair shocks. Let T* be the 

optimal time which would minimizes C(T; p). Take the first 

derivative of (5) with respect to T* and set it equal to 0, we have 

,                             (6) 

where  

. Thus if 

(t) is continuous and increases to , then there exists at least 

one finite positive solution T* satisfying  

. And if (t) is 

strictly increasing and continuous, then T* is unique and C(T*; 
p) = (T*). Differentiating (t) we obtain ’(t) = (t) e(t) 

where 

 

 

                        (7) 

 

It is obviously that if (t) > 0 for all t > 0, then there exists a 

unique and finite optimal T*. It is worth to note that if (t) is 

increasing (i.e., IFR), then it must (t) > 0 and the unique and 

finite optimal T* exists; however, (t) > 0 does not necessary 

require (t) should be IFR. Even decreasing (t) can satisfy 

(t) > 0. 

4. Conclusion 

This paper discusses the optimality of age replacement policy 

for a GPP repairable system. GPP repair is a new way to model 

the effect of repair on a system’s failure rate. It can be used to 

study the maintenance problem where a multi-component 

product becomes less reliable after a failed component repair. 

Thus it is a “worse than minimal repair” type. We show that 

under reasonable assumptions, there exists a unique optimal 

replacement age that can minimize the long run expected cost 

per unit time. Our results offer an important analytical tool for 

reliability engineer to design more competitive maintenance 

policy. 
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