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Abstract 
 

In this article, the author present the another class of functions which is called a contra generalized b - continuous function in                    

topological spaces. A few portrayals and properties identified with contra g b - continuous functions are to be obtained. 
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1. Introduction 

Dontchev presented the thoughts of acontra continuous function on 

1970. Another class of capacity called contra b-continuous          

presented by Nasef. The researchers M. S. M. Noorani and A. A. 

Omari have examined advanced properties of b-afunction on 2009. 

This article, the presentation of the new idea of contra g b -

continuous and concentrate a portion of the utilizations of this 

function. We additionally present and concentrate two new spaces 

called g b -HHausdorff spaces, g b - normal spaces and get 

some new outcomes. Through this article ( ),X   and 

( ),Y  stands for the non-empty topological spaces. Let X A   

will be indicated by ( )int A  and ( )closer A  separately, the set X 

g b - is union of all SetO in  setC with A  is called g b - interior 

of A  then which is signified g b - ( )int A , the point of intersec-

tion all g b - sets of X is in A called g b - closure of A  and it is 

meant by g b - ( )closure A .  

Assumption: afunction – Contra Continuous Function, SetO–Open 

Set, spaces –HHausdorff spaces, closed set-setC  

2. Preliminary 

Definition 2.1: Assume that A  be the subset A for the 

space ( ),X  , which is known as  

( )i Semi-SetO when ( )( ) clo in A A   

( )ii  -SetO when ( )( )( ) in clo in A A  

( )iii b -SetO when ( )( ) ( )( ) clo in A in clo A A    

( )iv Pre-SetO when ( )( )  in cl A A  

( )v ( )clo A U , whatever A U , 

( )vi b -setC , when ( )bclo A U  if A U , U  is open in X .  

( )vii  Pre-setC generalized semi- set, when ( ) ,spr A U  A U  

with U is open in X. 

( )viii  Generalized b-semi setC set when ( )bclo A U . if A U  

and U is semi open in X.  

( )ix  Pre-regular generalized setC set when ( ) ,pclo A U   

( )x  SetC  b-generalized when ( )bclo A U ,  

( )xii  Semi generalized setC set with the condition ( ) .sclo A U   

 

Definition 2.2: Assume that ( ) ( ), : ,Y f X →  is known as a 

( )1  Contra pre, when ( )1f V− is pre-setC in ( ),X   any SetO V of 

( ),Y  . 

( )2  b-afunction when ( )1f V− is b-setC in ( ),X   any SetO V of 

( ),Y  . 

( )3  gpr-afunction when ( )1f V− is to be gpr-setC in ( ),X   meant 

any  SetO V of  ( ),Y  .  

( )4  Contra gb-continuous when ( )1f V− is to be gb-setC in 

( ),X   any  SetO V of ( ),Y  . 

( )5  afunction when ( )1f V− is to be setC in ( ),X  any SetO V of 

( ),Y  . 

( )6 Contra g -continuous with the condition ( )1f V− is g -setC 

in ( ),X  any SetO V of ( ),Y  . 

( )7 Contra gsp-continuous when ( )1f V− is to be gsp-setC in 

( ),X   any SetO V   of  ( ),Y  .  

( )8  Semi afunction when ( )1f V− is semi-setC n ( ),X   any SetO 

V of ( ),Y  . 
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3. Contra generalized b - continuous        

functions 

In this area, The presentation of a contra generalized b -

continuous and explore a portion of their properties.  

 

Definition 3.1: Let a function ( ): ( ), ,f X Y →  is known as a    

generalized contra b -continuous function and with the condi-

tion ( )1f V− is g b -setC in ( ),X  any SetO V of ( ),Y  .  

Example 3.2: Assume that the function  , ,X Y a b c= = by way 

of the function       , , , , ,X a b a b = and   , , ,Y a b = . 

Let us consider another function :  ,( ,)( )f X Y   by            

( ) ,f a b= ( ) ,f b c= ( )f c a= . Obviously, g b - continuous.  

 

Definition 3.3:  Assume that the subset A of the space ( ),X  then 

we define the set  

( )i Set  :F X A F   , F is g b -setC then the g b -closure 

of A, which is written by g b - ( ).cl A .   

( )ii Set  :G X G A   , G is SetO and it is known as interior -

g b  set A, which is written by g b - ( )int A .   

Lemma 3.4: For ,x X x g b   iff U A  =  for any g b -

SetO U is in x. 

Vital Part: Assume that   a g b -SetO  U is in x with the end 

goal that U A  = . Hence ( ),A X U g b clo A X U − −  − . 

This is implies that ( )x g b cl A − . This is an inconsistency.  

Adequacy part: Let assume that ( )x g b cl A − . Now   a 

g b -setC subset F in A such that x F . Then x X F − is 

g b -open, ( )X F A  −   =  .  This is an inconsistency. 

Theorem 3.5: Assume that function ( ) ( ): , ,f X Y →  be the 

map.  The subsequent conditions are also the same: 

( )i  The function f were contra in g b - continuous, 

( )ii The quash image of every setC set in ( ),Y  are also g b -

SetO in ( ),X  . 

( )iii  Any set x X  and for every ( ),F C Y f x     then   

( )U g b op X −   , with the end of ( ) .f U F   

Proof: In case  (i)   (ii) and case (ii) (iii) are self-evident. 

(iii) (ii): Assume that the function F be any setC set of Y , then 

( )1 .x f F− If ( )f x F then   ( ),xU g b o X x −  at extent 

that ( ) .xf U F  So, to obtain ( ) ( ) 1 1/xf F U x f F− −=   

( ),g b op X x − . Hence the each inverse of each setC set in 

( ),Y   is g b  -open in ( ),X  . 

( ) ( )ii iv : Suppose that A be a subset of X.  Assume that the set 

( )y Ker f A    . By result, the function ( ),F C Y y  if 

( ) .f A F =   We obtain the set ( )1A f F −=  and the set 

( ) ( )1 .g b cl A f F  −= −  Hence we get 

( ) .f g b cl A F =  −    and ( )y f g b clo A  −   . We get the 

result ( ) ( ) .f g b clo X Ker f A −         

Definition 3.6: Let assume that the function ( ) ( ), ,f X Y →  is 

known as g b - continuous if the preimage of each open ar-

rangement of Y is - g b open in X.  

Example 3.7: Suppose that set  , ,X Y a b c= = through that 

      , , , , , ,X a a b a c = with   , , ,Y a b = . Let 

( ) ( ), ,f X Y → by ( ) ( ) ( )f a f b f c a b c= = = = =  respective-

ly.  Without a doubt f is contra g b -continuous, also f is not 

g b -continuous. Since    1 , ,f a b b c−   =  is unable to belongs 

to g b -open in ( ),X  , whenever  ,a b is open in ( ),Y  .   

Example 3.8: Consider the set  , ,X Y a b c= =  and 

        , , , , ,X ac bc b c = with     , , , ,Y b b c = . Then 

the function ( ) ( ), ,f X Y → by uniqueness function.            

Obviously f  is a g b -continuous function, also it is not a     

contra g b -continuous. Since the reason that    1, ,b c f b c==     

is not a contra g b -setC set in ( ),X  . Somewhere  ,a b is open 

in ( ),Y  .  

Theorem 3.9: Assume that ( ) ( ), ,f X Y → is contra g b  -

continuous and ( ),Y  is regular then f is g b -continuous. 

Proof: Let ( ),X   and V be an SetO of ( ),Y   containing ( )f x . 

Hence ( ),Y   were regular, then a SetO W of ( ),Y  with 

( )f x way that ( )clo W V . Since f  is contra g b - continu-

ous, by result, There is a ( ),U g b Op X x − that ( )f U  is sub-

set of ( )clo W . Next   ( ) ( ) .f U clo W V  Since f is g b -

continuous.   

Theorem 3.10: Each afunction is a contra g b  continuous func-

tion. 

Proof: Let V be an SetO in ( ),Y  .  Hence f is afunction, 

( )1f V−  be setC when ( ),X  .  By result, Any setC is to be g b –

setC set.  Therefore ( )1f V− were g b -setC when in ( ),X  .  

Hence f is contra g b -continuous. 

Example 3.11: Assume that  , ,a b c A B= = among 

      , , , , ,a c a c X = and   , , ,a b Y = . To Describe the 

function ( ) ( ): , ,f X Y → through ( ),a f c=  ( ),b f a= and 

( ).c f b= Undoubtedly f is contra g b -continuous function and 

f  is also not afunction. Since    1, ,a c f a b−=     were not setC 

in ( ),X   wherever  ,a b is open in ( ),Y  .                                                                                                    

Theorem 3.12:  

( )i Any sg- afunction is also a g b -afunction. 

( )ii Any g b - afunction is also a gs-afunction.                               
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Example 3.13: 

( )1 Assume that the set  , , ,a b c X Y= =  along 

        , , , , ,a b a b X  = and       , ,a Y  = . To describe 

the function ( ) ( ): , ,f X Y → through ( ),a f c=  

( ),b f a= and ( ).c f b=  undoubtedly f is contra g b -

continuous function and f  is also a not afunction. Since 

   1b f a−=    were not setC in  ( ),X   wherever  ,a b is open 

in ( ),Y  .                                                                                    

( )2 Assume that the set  , , ,a b c X Y= =  along 

        , , , , , ,a b b c b c X  = and         , , , ,a a c Y  = . To 

describe the function ( ) ( ): , ,f X Y → through ( ),b f c=  

( ),c f a= and ( ).a f b=  undoubtedly f is contra g b -

continuous function and f  is also a not afunction. Since 

   1b f a−=    were not setC in ( ),X   wherever  ,a c is a SetO 

in ( ),Y  . 

Example. 3.14: Suppose that  , , ,a b c X Y= = along 

        , , , , ,a b b a X  = and   , ,b Y  = . Then to describe 

the function ( ) ( ): , ,f X Y → through ( ),c f a=  ( ),b f b=  

and ( )a f c= . Undoubtedly f is contra sg − continuous function 

and f  is also a not g b - afunction. Since    1b f a−=    were 

not setC in ( ),X   wherever  b is a SetO in ( ),Y  . 

Example. 3.15: Assume  , , ,a b c X Y= = along 

        , , , , ,a c c a X  = and     , , , ,a c c Y  = To describe 

the function ( ) ( ): , ,f X Y → through ( ),a f c= ( )b f b= and 

( )a f c= . Undoubtedly f is contra g b continuous function and 

f  is also a not sg − afunction. Since    1, ,a c f a c−=    were 

not setC in ( ),X   wherever  ,a c is a SetO in ( ),Y  . 

4. Applications 

Definition: Assume that ( ),X   be the topological space, then 

which is called a g b -Hausdorff space. When for every different 

points ( ),x y in X , then ( ),U Op X x  and 

( ),V g b Op X y −  with U V  = . 

Egs: Suppose that set  , ,a b c X= along 

            , , , , , , , , , ,a c b c a b a b c X  =  and assume that x  

and y are the two different points of X, then g b -neighborhood 

of x  and y correspondingly, then    x y =  .  Therefore 

( ),X   is a g b -Hspace.  

Theorem: Consider the topological space X. whos pairs are dis-

tinct point 1x point 2x then f X→ into with the 

( ) ( )2 1f x f x then f is g b  afunction at 2x and 1x . Also X is -

g b Hspace. 

Proof: Suppose that X having the two distinct points 2x  and 1x . 

With the assumption that, Y be the Uryshon space and there is a 

function   :f X Y→ with the condition ( ) ( )2 1f x f x  and f is 

g b - afunction at the points 
2x and 

1x . Assume that ( )i if x y  

with 1,2,3,....i =  and
2 1y y . Hence Y is Uryshon space and there 

is an SetOs 2 1,y yU U  containing with 
2y  and 

1y  in Y which is in 

( ) ( )2 1y yClo U Clo U =  . Hence f  is g b  afunction at 
2x  and 

1x in X with ( ) ( )yi yxClo U f V for 1,2,3,...i = There-

fore ( ) ( )2 1x xV V =  . Hence X is g b -Hspace. 

Corollary:  With the condition that f is g b - contra g b - 
Hspace. 

Proof: Consider the 
1x  and 

2x  two different points in X. Through 

the hypothesis, g b - afunction in X into a Uryshon space Y such 

that ( ) ( )2 1f x f x , because f is injective.  Hence by theorem, X  

is g b -Hspace. 

5. Conclusion 

The classes of contra summed b  - setC frame that lies       be-

tween the class of the class of afunction map and gb- afunction 

map.  
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