

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A New Type of ^aContra Continuous Functions

^{*1}v. Amirthalingam, ²m. Vijayarakavan

^{1,2}Department of Mathematics, Vinayaka Missions's Kirupananda Variyar Engineering College, Vinayaka Missions's Research Foundation (Deemed to be University) Salem – 636 308, Tamilnadu, India *Corresponding Author Email: amirvbm14 @gmail.com

Abstract

In this article, the author present the another class of functions which is called a contra generalized αb - continuous function in topological spaces. A few portrayals and properties identified with contra $g\alpha b$ - continuous functions are to be obtained.

Keywords: gab - SetO, gab -continuity, contra gab -continuity.

1. Introduction

Dontchev presented the thoughts of ^a contra continuous function on 1970. Another class of capacity called contra b-continuous presented by Nasef. The researchers M. S. M. Noorani and A. A. Omari have examined advanced properties of b-afunction on 2009. This article, the presentation of the new idea of contra $g\alpha b$ continuous and concentrate a portion of the utilizations of this function. We additionally present and concentrate two new spaces called $g\alpha b$ -^HHausdorff spaces, $g\alpha b$ - normal spaces and get some new outcomes. Through this article (X,τ) and (Y,σ) stands for the non-empty topological spaces. Let $X \supseteq A$ will be indicated by int(A) and closer(A) separately, the set X $g\alpha b$ - is union of all Set^O in set^C with A is called $g\alpha b$ - interior of A then which is signified $g\alpha b$ - int(A), the point of intersection all $g\alpha b$ - sets of X is in A called $g\alpha b$ - closure of A and it is meant by $g\alpha b$ - closure(A).

Assumption: a function – Contra Continuous Function, Set^O–Open Set, spaces –^HHausdorff spaces, closed set-set^C

2. Preliminary

Definition 2.1: Assume that A be the subset A for the space (X, τ) , which is known as

- (*i*) Semi-Set^O when $clo(in(A)) \supseteq A$
- (*ii*) α -Set^O when $in(clo(in(A))) \supseteq A$
- (*iii*) b-Set^O when $clo(in(A)) \cup in(clo(A)) \supseteq A$
- (iv) Pre-Set^O when in $(cl (A)) \supseteq A$
- $(v) \ clo(A) \subseteq U$, whatever $A \subseteq U$,
- (vi) b-set^C, when $bclo(A) \subseteq U$ if $A \subseteq U$, U is open in X.

- (vii) Pre-set^C generalized semi- set, when $spr(A) \subseteq U$, $A \subseteq U$ with U is open in X.
- (*viii*) Generalized b-semi set^C set when $bclo(A) \subseteq U$. if $A \subseteq U$ and U is semi open in X.
- (*ix*) Pre-regular generalized set^C set when $pclo(A) \subseteq U$,
- (x) Set^C α b-generalized when $bclo(A) \subseteq U$,
- (*xii*) Semi generalized set^C set with the condition $sclo(A) \subseteq U$.

Definition 2.2: Assume that $(Y, \sigma) \rightarrow f: (X, \tau)$ is known as a

- (1) Contra pre, when $f^{-1}(V)$ is pre-set^C in (X, τ) any Set^O V of (Y, σ) .
- (2) b-*a*function when $f^{-1}(V)$ is b-set^C in (X, τ) any Set^O V of (Y, σ) .
- (3) gpr-*a*function when $f^{-1}(V)$ is to be gpr-set^C in (X, τ) meant any Set^O V of (Y, σ) .
- (4) Contra gb-continuous when $f^{-1}(V)$ is to be gb-set^C in (X,τ) any Set^O V of (Y,σ) .
- (5) *a*function when $f^{-1}(V)$ is to be set^C in (X, τ) any Set^O V of (Y, σ) .
- (6) Contra g α -continuous with the condition $f^{-1}(V)$ is g α -setC in (X, τ) any Set^O V of (Y, σ) .
- (7) Contra gsp-continuous when $f^{-1}(V)$ is to be gsp-set^C in (X,τ) any Set^O V of (Y,σ) .
- (8) Semi *a*function when $f^{-1}(V)$ is semi-set^C n (X, τ) any Set^O V of (Y, σ) .

3. Contra generalized αb - continuous functions

In this area, The presentation of a contra generalized αb - continuous and explore a portion of their properties.

Definition 3.1: Let a function $f:(X,\tau) \to (Y,\sigma)$ is known as a generalized contra αb -continuous function and with the condition $f^{-1}(V)$ is $g\alpha b$ -set^C in (X,τ) any Set^O V of (Y,σ) .

Example 3.2: Assume that the function $X = Y = \{a, b, c\}$ by way of the function $\{X, \varphi, \{a\}, \{b\}, \{a, b\}\} = \tau$ and $\sigma = \{Y, \varphi, \{a, b\}\}$. Let us consider another function $f : (X, \tau)(Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Obviously, gab - continuous.

Definition 3.3: Assume that the subset *A* of the space (X, τ) then we define the set

(*i*) Set $\cap \{F \subset X : A \subset F\}$, *F* is $g\alpha b$ -set^C then the $g\alpha b$ -closure of *A*, which is written by $g\alpha b$ -cl(A).

(*ii*) Set $\cup \{G \subset X : G \subset A\}$, *G* is Set^o and it is known as interior - $g\alpha b$ set *A*, which is written by $g\alpha b$ - int(*A*).

Lemma 3.4: For $x \in X, x \in g\alpha b$ iff $U \cap A = \varphi$ for any $g\alpha b$ -SetO U is in x.

Vital Part: Assume that \forall a $g\alpha b$ -Set^O U is in x with the end goal that $U \cap A = \varphi$. Hence $A \subset X - U, g\alpha b - clo(A) \subset X - U$. This is implies that $x \notin g\alpha b - cl(A)$. This is an inconsistency.

Adequacy part: Let assume that $x \notin g\alpha b - cl(A)$. Now \forall a $g\alpha b$ -set^C subset F in A such that $x \notin F$. Then $x \in X - F$ is $g\alpha b$ -open, $[(X - F) \cap A] = \varphi$. This is an inconsistency.

Theorem 3.5: Assume that function $f:(X,\tau) \rightarrow (Y,\sigma)$ be the map. The subsequent conditions are also the same:

(i) The function f were contra in $g\alpha b$ - continuous,

(*ii*) The quash image of every set^C set in (Y, σ) are also $g\alpha b$ - Set^O in (X, τ) .

(*iii*) Any set $x \in X$ and for every $F \in C[Y, f(x)]$ then $\forall U \in [g\alpha b - op(X)]$, with the end of $f(U) \subset F$.

Proof: In case (i) \Leftrightarrow (ii) and case (ii) \Rightarrow (iii) are self-evident. (iii) \Rightarrow (ii): Assume that the function *F* be any set^C set of *Y*, then $x \in f^{-1}(F)$. If $f(x) \in F$ then $\forall U_x \in gab - o(X, x)$ at extent that $f(U_x) \subset F$. So, to obtain $f^{-1}(F) = \bigcup \{U_x / x \in f^{-1}(F)\}$ $\in gab - op(X, x)$. Hence the each inverse of each setC set in (Y, σ) is gab -open in (X, τ) .

 $(ii) \Rightarrow (iv)$: Suppose that *A* be a subset of *X*. Assume that the set $y \notin Ker[f(A)]$. By result, the function $F \in C(Y, y)$ if $\varphi = f(A) \cap F$. We obtain the set $\varphi = A \cap f^{-1}(F)$ and the set $\varphi = g\alpha b - cl(A) \cap f^{-1}(F)$. Hence we get

 $\varphi = f [g\alpha b - cl(A)] \cap F$ and $y \notin f [g\alpha b - clo(A)]$. We get the result $f [g\alpha b - clo(X)] \subset Ker [f(A)]$.

Definition 3.6: Let assume that the function $f(X,\tau) \rightarrow (Y,\sigma)$ is known as $g\alpha b$ - continuous if the preimage of each open arrangement of *Y* is - $g\alpha b$ open in *X*.

Example 3.7: Suppose that set $X = Y = \{a,b,c\}$ through that $\tau = \{X, \varphi, \{a\}, \{a,b\}, \{a,c\}\}$ with $\sigma = \{Y, \varphi, \{a,b\}\}$. Let $f(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = f(b) = f(c) = a = b = c respectively. Without a doubt f is contra $g\alpha b$ -continuous, also f is not $g\alpha b$ -continuous. Since $f^{-1}[\{a,b\}] = \{b,c\}$ is unable to belongs to $g\alpha b$ -open in (X, τ) , whenever $\{a,b\}$ is open in (Y, σ) .

Example 3.8: Consider the set $X = Y = \{a, b, c\}$ and $\sigma = \{X, \varphi, \{ac\}, \{bc\}, \{b\}, \{c\}\}$ with $\sigma = \{Y, \varphi, \{b\}, \{b, c\}\}$. Then the function $f(X, \tau) \rightarrow (Y, \sigma)$ by uniqueness function. Obviously f is a $g\alpha b$ -continuous function, also it is not a contra $g\alpha b$ -continuous. Since the reason that $\{b, c\} = f^{-1}[\{b, c\}]$ is not a contra $g\alpha b$ -set^C set in (X, τ) . Somewhere $\{a, b\}$ is open in (Y, σ) .

Theorem 3.9: Assume that $f(X,\tau) \rightarrow (Y,\sigma)$ is contra $g\alpha b$ - continuous and (Y,σ) is regular then f is $g\alpha b$ -continuous.

Proof: Let (X,τ) and V be an Set^O of (Y,σ) containing f(x). Hence (Y,σ) were regular, then a Set^O W of (Y,σ) with f(x) way that $clo(W) \subset V$. Since f is contra $g\alpha b$ - continuous, by result, There is a $U \in g\alpha b - Op(X,x)$ that f(U) is subset of clo(W). Next $f(U) \subset clo(W) \subset V$. Since f is $g\alpha b$ - continuous.

Theorem 3.10: Each *^a*function is a contra $g\alpha b$ continuous function.

Proof: Let V be an Set^O in (Y, σ) . Hence f is *a*function, $f^{-1}(V)$ be set^C when (X, τ) . By result, Any set^C is to be $g\alpha b$ – set^C set. Therefore $f^{-1}(V)$ were $g\alpha b$ -set^C when in (X, τ) . Hence f is contra $g\alpha b$ -continuous.

Example 3.11: Assume that $\{a,b,c\} = A = B$ among $\tau = \{\{a,c\},\{a\},\{c\},X,\phi\}$ and $\sigma = \{\{a,b\},\phi,Y\}$. To Describe the function $f:(X,\tau) \rightarrow (Y,\sigma)$ through a = f(c), b = f(a), and c = f(b). Undoubtedly f is contra $g\alpha b$ -continuous function and f is also not *a*function. Since $\{a,c\} = f^{-1}[\{a,b\}]$ were not setC in (X,τ) wherever $\{a,b\}$ is open in (Y,σ) .

Theorem 3.12:

(*i*) Any sg- ^{*a*} function is also a $g\alpha b$ -^{*a*} function.

(*ii*) Any $g\alpha b$ - ^{*a*}function is also a gs-^{*a*}function.

Example 3.13:

 $\{a,b,c\} = X = Y,$ Assume that the set along (1) $\{\{a,b\},\{a\},\{b\},\{X,\phi\}\} = \tau$ and $\{\{a\},\{Y\},\{\phi\}\} = \sigma$. To describe $f:(X,\tau) \to (Y,\sigma)$ through the function a = f(c),b = f(a), and c = f(b). undoubtedly f is contra $g\alpha b$ continuous function and f is also a not ^{*a*}function. Since $\{b\} = f^{-1} \lceil \{a\} \rceil$ were not set^C in (X, τ) wherever $\{a, b\}$ is open in (Y,σ) .

(2) Assume that the set $\{a,b,c\} = X = Y$, along $\{\{a,b\},\{b,c\},\{b\},c\{X,\varphi\}\} = \tau$ and $\{\{a\},\{a,c\},\{Y\},\{\varphi\}\}\} = \sigma$. To describe the function $f:(X,\tau) \to (Y,\sigma)$ through b = f(c), c = f(a), and a = f(b). undoubtedly f is contra gab -continuous function and f is also a not *a*function. Since $\{b\} = f^{-1}[\{a\}]$ were not set^C in (X,τ) wherever $\{a,c\}$ is a Set^O in (Y,σ) .

Example. 3.14: Suppose that $\{a,b,c\} = X = Y$, along $\{\{a,b\},\{b\},\{a\},\{X,\phi\}\} = \tau$ and $\{\{b\},Y,\phi\} = \sigma$. Then to describe the function $f:(X,\tau) \rightarrow (Y,\sigma)$ through c = f(a), b = f(b), and a = f(c). Undoubtedly f is contra sg – continuous function and f is also a not $g\alpha b$ – ^afunction. Since $\{b\} = f^{-1}[\{a\}]$ were not setC in (X,τ) wherever $\{b\}$ is a Set^O in (Y,σ) .

Example. 3.15: Assume $\{a,b,c\} = X = Y$, along $\{\{a,c\},\{c\},\{a\},\{X,\varphi\}\} = \tau$ and $\{\{a,c\},\{c\},Y,\varphi\} = \sigma$ To describe the function $f:(X,\tau) \rightarrow (Y,\sigma)$ through a = f(c), b = f(b) and a = f(c). Undoubtedly f is contra $g\alpha b$ continuous function and f is also a not sg - a function. Since $\{a,c\} = f^{-1}[\{a,c\}]$ were not setC in (X,τ) wherever $\{a,c\}$ is a Set^O in (Y,σ) .

4. Applications

Definition: Assume that (X, τ) be the topological space, then which is called a $g\alpha b$ -Hausdorff space. When for every different points (x, y) in X, then $U \in Op(X, x)$ and $V \in g\alpha b - Op(X, y)$ with $U \cap V = \varphi$.

Egs: Suppose that set $\{a,b,c\} = X$ along $\{\{a,c\},\{b,c\},\{a,b\},\{a\},\{b\},\{c\},X,\varphi\} = \tau$ and assume that x and y are the two different points of X, then $g\alpha b$ -neighborhood of x and y correspondingly, then $\varphi = \{x\} \cap \{y\}$. Therefore (X,τ) is a $g\alpha b$ -^Hspace.

Theorem: Consider the topological space X. whos pairs are distinct point x_1 point x_2 then $f \to X$ into with the $f(x_2) \neq f(x_1)$ then f is $g\alpha b^{-\alpha}$ function at x_2 and x_1 . Also X is $-g\alpha b^{-H}$ space.

Proof: Suppose that X having the two distinct points x_2 and x_1 . With the assumption that, Y be the Uryshon space and there is a function $f: X \to Y$ with the condition $f(x_2) \neq f(x_1)$ and f is $g\alpha b$ - ^{*a*}function at the points x_2 and x_1 . Assume that $f(x_i) \neq y_i$ with i = 1, 2, 3, ... and $y_2 \neq y_1$. Hence *Y* is Uryshon space and there is an Set^Os U_{y2}, U_{y1} containing with y_2 and y_1 in *Y* which is in $\varphi = Clo(U_{y2}) \cap Clo(U_{y1})$. Hence *f* is $g\alpha b$ ^{*a*}function at x_2 and x_1 in *X* with $Clo(U_{y1}) \supset f(V_{yx})$ for i = 1, 2, 3, ... Therefore $\varphi = (V_{x2}) \cap (V_{x1})$. Hence *X* is $g\alpha b$ -^Hspace.

Corollary: With the condition that f is $g\alpha b$ - contra $g\alpha b$ - ^Hspace.

Proof: Consider the x_1 and x_2 two different points in *X*. Through the hypothesis, $g\alpha b - {}^a$ function in *X* into a Uryshon space *Y* such that $f(x_2) \neq f(x_1)$, because *f* is injective. Hence by theorem, *X* is $g\alpha b - {}^{\text{H}}$ space.

5. Conclusion

The classes of contra summed αb - setC frame that lies between the class of the class of *a*function map and gb- *a*function map.

Acknowledgement

The authors gratefully acknowledge to **Dr. A. Nagappan**, Principal, Vinayaka Mission Kirupananda Variar Engineering College, Vinayaka Missions Research Foundations, for his constant encouragement, kind help and suggestions and support.

References

- M.E. Abd El-Monsef, S.N. Deeb and R.A. Mahmoud, β -Set^os and β – continous mappings, Bull.Fac.Sci.Assiut, Univ, 12(1983), 77-90.
- [2] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-setC sets. Bull. Malays. Math. Sci. Soc(2) 32(1) (2009), 19-30.
- [3] Al-Omari A. and Noorani AMd., Some properties of contra bcontinuous and almost contra, European J. of Pure and App.Math., 2 (2009) 213-30.
- [4] D.Andrijevic, Semi-pre Set^os mat.Vesnik 38 (1) 1986, 24-32.
- [5] D.Andrijevic, b-Set^os, Mat.Vesink, 48 (1996), 59-64.
- [6] S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure Applied Maths 21 (8) (1990) 717-719.
- [7] P.Bhattacharya and B.K.Lahiri, Semi-generalized setC sets on topology, Indian J.Maths 29 (3) (1987) 375-382.
- [8] M.Caldas and S.Jafari, On some applications of b-SetOs in topological spaces, Kochi J.Math. 24(4) (1998), 681-688.
- [9] G.Dimaio and T.Noiri, On s-setC spaces, Indian J-pure appl.math 18 (3) 1987, 226-233.