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Abstract 

 
Heat pipes are used in thermal management of electronic devices due to their efficient heat transfer capability from source to sink with a 
very small temperature difference. These passive heat transfer devices can employ sintered powder, screen mesh, machined grooves or 
its combination as wick material to exert capillary action on the working fluid. In this work, attempt was made to develop a flat heat pipe 

using a helical grooved cylindrical pipe. The helical groove present in the cylindrical pipe is used as wick. The developed flat heat pipe 
was targeted for a power range of 3 W without dedicated cooling mechanism for condenser. Experimental studies were also conducted 
up to 5 W to verify the extension of operating power range of the heat pipe using a fan.  This paper primarily focus on the transient 
behavior of to understand the time constant of the heat pipe at different orientations and cooling scenarios. Later the transient thermal 
performance of heat pipe was also compared with dry heat pipe. 
 
Keywords: Flat heat pipe, transient, time constant, Grooved heat pipe 

 

1. Introduction 

The s recent  s trends s in s industries s indicate s the s extensive s usage s of s heat s 

pipes s in s electronics s cooling s due s to s their s reliable s and s efficient s thermal  s 

management  s capability.  s It s is s to s be s noted s that  s approximately s 15 s 

million s heat s pipes s are s produced s worldwide s for s computer s and s 

electronic s products s [1]. s A s heat s pipe s consists s of s  an s hollow s container s 

lined s with s a s wick s that s is s saturated s with s a s small s amount s of s working s 

fluid s in s an s evacuated s condition. s One s end s of s the s heat s pipe s is s exposed s 

to s higher s temperature s called s the s evaporator s section s and s the s other s end s 

to s a s relatively s colder s temperature s called s the s condenser s section. s The s 

latent s energy s is s used s to s evaporate s the s working s fluid s in s the s evaporator s 

and s condense s the s vapor s in s the s condenser. s The s circulation s of s working s 

fluid s in s the s heat s pipe s is s completed s by s the s return s flow s of s condensate s to s 

evaporator s through s the s wick s under s the s driving s action s of s capillary s  

forces. s This s phenomenon s continues s as s long s as s enough s capillary s  

pressure s exists.  s It s is s imperative s to s select s a s proper s working s fluid s and s 

wick s structure s to s transfer s heat s effectively s from s the s evaporator s 

section s to s condenser s section.  s The s configuration s of s a s cylindrical s heat s 

pipe s is s shown s in s figure s 1. 
 

 
Fig. s 1: s Cylindrical s  Heat  s Pipe 

The s flat s heat s pipes s operate s similar s to s cylindrical  s heat s pipes s and s 

difference s between s the s two s is s geometrical.  s The s flat s heat s pipe s 

geometry s allows s it s to s have s a s compatible s mating s surface s with s 

semiconductor s devices s compared s to s cylindrical  s heat s pipe. s Hence s flat s 

heat s pipes s can s be s easily s implemented s in s complex s design. s Figure s 2 s 

shows s a s typical  s flat s heat s pipe s with s electronic s device s mounted. s  
 

 
Fig. 2: s Flat s Heat s Pipe s with s electronic s  device 

The selectrical  s power s numbers s encountered s in s smartphone s 

processors s and s LED s (Light s  Emitting s Diode) s display s  application s are s 

generally s less s than s 10 s W.  s Flat s heat s pipes s can s function s as s heat s 

spreaders s or s efficiently s transfer  s the s heat s to s a s heat s dissipating s 

mechanism s like s heat s sink s in s such s applications. s The s present s work s 

discusses s about s the s development  s of s a s  flat s heat  s pipe s in s the s range s of s 3 s  

W s to s  5 s W s using s a s readily s  available s helical s grooved s copper s pipe.  s The 

s inherent s helical  s grooves s present  s in s raw s copper s pipe s are s being s used s 

as s wick s avoiding s the s expensive s machining s process s for s groove s  

cutting.  s The s cylindrical  s copper s pipe s was s flattened s for s easily s  

adhering s to s electronic s device s surface.  s  s Earlier s the s steady s  state s 

functionality s of s the s developed s flat s heat s pipe s was s demonstrated s 

under s natural  s convection s mode s at s 3 s W s power s input s at s different s 

mounting s angles.  s The s test s results s indicated s that s the s heat s pipe s was s 

functioning s satisfactorily s  at s all s angles s with s thermal s resistance s of s  

around s 3 s K/W s [2]. s It s was s noted s that s by s using s fan s as s a s dedicated s 
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cooling s mechanism s the s power s range s of s heat s pipe s can s be s  extended s  s  

up s to s 5 s W. 
In  s actual s electronic s products s or s  modules s the s time s taken s for s  

semiconductor  s devices s once s  powered s on s  to s reach s steady s state s is s 

also s an s important  s factor s  to s understand s the s functioning s  capability.  s  

Also s during s actual s operation s of s these s modules, s device s power s 

dissipation s values s can s fluctuate s based s on s its s intended s functions. s 

Hence s in s the s heat s pipe s product s level s implementation s it s is s also s 

imperative s to s understand s its s heat s transfer s capability s with s respect  s to s 

time. s  s This s paper s focuses s on s the s transient  s startup s characteristics  s of s  

the s developed s flat s heat s pipe. s The s time s constant  s values s for s different  s 

test s conditions s are s reported s and s compared s with s a s dry s heat s pipe s to s 

demonstrate s the s heat s pipe s efficiency. 

2. Literature s Survey 

Extensive s literature s survey s has s been s carried s out s on s research s 

activities s and s current s trends s in s flat s heat s pipes.  s Amir s Fahgri s [3] s in s his 

s review s paper s has s done s a s detailed s overview s of s heat s pipes s covering s  

the s historical  s perspective,  s principles s of s  operations,  s types s of s  heat  s 

pipes, s performance s characteristics,  s simulations s and s its s various s 

applications.  s It s has s been s observed s that s several s million s heat s pipes s are 

s now s  manufactured s each s month s since s all s modern s laptops s use s heat s 

pipes s for s CPU s cooling. s Sergii  s Khairnasov s and s Alyona s Naumova s [4] 

s indicated s that s flat s heat s pipes s are s at s an s early s stage s of s wide s 

implementation s in s electronics s thermal s control  s systems.  s Jihad s 

Hammoud s [5] s et s al.  s implemented s heat s pipe s in s automotive s radio s and s  

experimentally s  validated s the s effectiveness s of s  the s system s by s  

comparing s the s CD/media s temperature s with s and s without s heat s pipe. 

A. Steady s State s Studies 

Wang s et s al.  s [6] s developed s flat  s copper s heat s pipe s with s silicon s wick s for  

s a s capacity s up s  to s  10 s W. s The s flat  s heat s pipe s  s had s 45 s mm s length,  s 16 s mm 

s width s and s 1.5 s mm s height.  s The s heat s pipe s was s able s to s remove s heat s 

from s a s surface s of s 16 s mm s x s 16 s mm. s A s comparative s analysis s of s a s 

grooved s copper s wick s and s a s silicone s based s wick s was s also s included s in 

s their s study. s The s grooved s copper s wick s heat s pipe s efficiency s was s  

higher s than s the s one s on s the s basis s of s silicone s by s 17%. s Their s research s 

demonstrated s the s use s of s flat s heat s pipe s for s LED s cooling s systems.  s  

An s experimental  s investigation s of s aluminum-acetone s flat s plate s heat s 

pipe s application s in s heat s dissipation s of s high s power s LEDs s  was s done s  

by s Wu-Man s Liu s et s al. s [7]. s The s high s power s LEDs s temperature s with s 

and s without s heat s pipe s were s compared.  s The s input s power s variations s 

studied s were s 6.27 s W, s 13.32 s W s and s 20.61 s W. s The s maximum s 

temperature s experienced s was s 161oC s for s power s of s 20.61 s W s without s 

heat s pipe,  s against  s 36oC s when s tested s with s heat  s pipe.  s The s heat  s 

removal s efficiency s of s the s flat  s heat s pipe s was s found s to s be s around s 92-

95%. s  
Ultra-thin s heat s pipe s developed s by s Hirofumi s Aoki s et s al. s [8] s can s be s 

used s for s thinner  s and s lighter s electronic s equipment.  s Their s study s  was s  

focused s on s optimizing s vapor s and s liquid s flow s pressure s drop s in s the s 

heat s pipe. s The s heat s pipe s developed s had s 1 s mm s  thickness s with s 

maximum s heat s transfer s rate s of s 22.1 s W. s Copper s block s heater s (40 s mm 

s x s  10 s  mm) s  was s  used s as s heat s source s and s  a s  copper s block s (85 s mm s x s 10 s  

mm) s cooled s by s water s cooling s system s as s the s condenser.  s Thermal s 

resistance s of s the s heat s pipe s was s estimated s to s be s around s 0.13 s K/W.  s 

These s flat s heat s pipes s with s 20 s W s  power s  range s were s applied s mainly s  

for s electronic s devices s and s for s LED s cooling s systems.  s The s 

temperature s in s such s application s was s restricted s to s around s 100oC s 

considering s the s limit s of s electronic s device s temperature.  s  
AMEC s Thermasol  s [9] s are s commercially s producing s aluminum s flat s 

heat s pipes s with s acetone s as s working s fluid. s These s heat s pipe s can s 

operate s within s the s temperature s range s from s -40oC s to s +100oC s at s 

different  s tilt s angles s from s 0 s to s 90 s degrees.  s The s grooved s wick s allows s 

the s use s of s these s heat s pipe s in s horizontal s position s and s small s tilt s 

angles.  s These s heat s pipes s with s a s dimension s of s 200 s  mm s length,  s 20 s  

mm s width s and s 1.2 s mm s  thick s are s rated s for s maximum s power s  range s of s  

5 s W s to s 18 s W. s They s are s generally s used s for s cooling s memory s cards, s 

optical s communication s modules s and s lighting s systems. 
Zaghdoudi s et s al. s [10] s had s carried s out s experimental s study s to s verify s  

the s concept  s of s  Flat s Mini s Heat  s Pipe s (FMHP) s for s cooling s high s power s  

dissipation s electronics s components.  s The s FMHP s prototype s had s  

capillary s structure s composed s of s parallel  s rectangular  s channels s 

manufactured s and s a s filling s apparatus s was s developed s to s charge s the s 

heat s pipe.  s The s heat s pipe s performance s was s compared s to s that  s of s  

copper s plate s having s  same s dimension s for s different  s heat s flux s rates.  s 

The s overall  s length,  s width s and s thickness s of s the s heat s pipe s were s 100 s 

mm, s 50 s  mm s and s 3  s mm s  respectively.  s  The s heat  s pipe s had s 47 s micro s  

channels.  s The s micro s channels s height,  s width s and s spacing s were s 0.5 s 

mm, s 0.5 s mm s and s 1 s mm s respectively.  s Heat s was s removed s from s the s 

FMHP s by s a s water s cooling s mechanism.  s The s length s of s the s 

evaporator,  s adiabatic s and s condenser  s zones s were s 19 s mm, s 35 s mm s and  

s 40 s  mm s respectively.  s The s  experiments s were s conducted s with s  

different  s heat s inputs s ranging s from s 10 s W s to s 60 s W. 
Effective s conductivity s based s thermal s model s for s simulating s vapor s 

chamber s type s  heat s pipe s using s FloTHERMTM
 s  commercial  s software s 

was s developed s by s  Wei s and s Sikka s [11]. s The s model s consists s of s a s  

heated s chip s mounted s on s one s side s of s  s  a s vapor s chamber s and s cooled s by s  

heat s sink s on  s  other s side.  s The s effective s conductivity s based s model  s  

used s in s simulation s predicted s the s temperature s profile s in s close s 

agreement  s with s the s detailed s numerical s model.  s  
Kesav s Kumar s and s Sridhara s [12] s arrived s at s a s steady s state s network s 

based s approach s for s the s above s model s  s to s predict s the s peak s 

temperature s of s the s heated s chip. s A s correction s in s area s is s suggested s 

while s calculating s the s wick s thermal  s resistance s as s thermal s contours s in 

s wick s will  s be s highly s two s dimensional.  s The s network s model  s 

suggested s was s validated s with s FloTHERMTM
 s results s and s seems s to s  

work s well  s for s varying s power s densities s when s heat  s sink s cross s  section s  

normal s to s the s direction s of s heat s flow s matched s with s the s vapor s 

chamber. 

B. Transient s Studies 

Wang s and s Vafai s [13] s investigated s the s transient  s thermal s performance s 

of s asymmetrical  s flat s heat s pipe.  s The s flat s heat s pipe s used s in s their s studies s 

was s 190.5 s mm s in s length, s 139.7 s mm s in s width s and s 34.93 s mm s in s 

thickness.  s The s heat s pipe s wall s is s made s up s of s thick s copper s plate s of s 

3.175 s mm s thick. s The s porous s wicks s were s made s of s sintered s copper s 

powder s (thickness s 1.651 s mm) s attached s to s the s inner s surface s of s the s 

heat s pipe s wall. s The s heat s pipe s also s had s vertical s wicks s to s provide s a s 

secondary s return s mechanism s for s the s condensate s forming s four s 

channels s for s vapor s region. s The s evaporator s was s located s on s center s of s 

one s of s the s outside s surfaces s of s heat s pipe. s Therefore s the s heat s pipe s had s 

one s evaporator s and s three s condenser s sections.  s In s all s tests s the s heat s pipe s 

was s mounted s vertically s so s that  s same s average s heat s transfer s coefficient 

s is s achieved s on s the s three s condensation s surfaces.  s A s flexible s heater s 

(139.7 s mm s length s and s 50.8 s mm s width) s was s used s as s the s heating s 

element s and s other s side s of s heater s was s insulated. s The s tests s were s 

conducted s at s varying s heat s flux s levels s ranging s from s 426 s W/m2
 s to s 

1690 s W/m2, s  s which s translates s to s 3 s W s to s 12 s W. s The s concept s of s the s 

heat s pipe s time s constant s was s introduced s to s describe s the s transient  s 

characteristics s of s the s flat s heat s pipe s and s an s empirical  s correlation s for s 

time s constant s in s terms s of s input s heat s flux s was s presented. s The s time s 

constant s value s measured s was s inversely s proportional  s to s input s heat s 

flux s and s varied s from s 55 s minutes s to s 80 s minutes.  s Later s they s developed s 

an s analytical  s model s for s predicting s transient s performance s of s flat s heat s 

pipe s for s startup s and s shut s down s operation s [14]. 
Zaghdoudi s et s al. s [15] s studied s the s effect s of s transient s acceleration s 

forces s with s constant s input s power s on s thermal s performance s of s copper-
water s flat s heat s pipe. s Transient  s accelerations s were s generated s using s a s 

centrifuge s table s to s simulate s acceleration s forces s typifying s high s 

performance s aircraft s maneuvering.  s The s heat s pipe s dimension s was s 150 

s mm s in s length,  s 50 s mm s in s width s and s 2.4 s mm s in s thickness, s weighing s 

around s 75 s grams.  s The s evaporator s and s condenser s dimension s was s 50 s 

mm s x s 15 s mm. s The s heat s pipe s was s designed s for s a s power s of s 60 s W.  s The s 

arterial s screen s meshes s were s used s as s the s capillary s structure. s The s 

investigation s revealed s  s decrease s in s the s heat s pipe s thermal s 
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performance s with s increasing s acceleration s as s a s result s of s partial s dry-
out s of s the s evaporator  s and s pooling s in s the s condenser. 
A s transient s thermal s model s to s simulate s the s cooling s power s of s 

MOSFET s by s helicoidally s grooved s cylindrical  s heat  s pipe s systems s was s 

done s by s Ameni  s Driss s et s al. s [16]. s The s power s variation s studied s was s 

from s 30 s W s to s 150 s W. s The s MOSFET s and s heat  s pipe s were s modeled s 

using s RC s thermal s circuit s approach. s The s thermal  s resistance s and s 

capacitance s values s of s heat s pipe s were s determined s by s experimental  s 

and s theoretical  s calculations. 
A s computational  s finite s difference s based s model s for s transient  s 

analysis s of s flat s heat s pipe s was s developed s by s Sobhan s et s al. s [17] s to s 

obtain s the s variations s of s  velocity,  s  temperature s and s pressure s 

distributions. s Water s was s chosen s as s the s working s medium.  s The s wick s 

and s wall s are s made s of s copper.  s A s wick s porosity s of s 0.6 s  s is s used s with s a s 

uniform s heat  s flux s of s 1 s W/cm2
 s is s applied s externally s at s the s evaporator  s 

section,  s while s the s condenser s section s is s cooled s by s imposing s a s heat  s 

transfer s coefficient  s of s  1000W/m2
 s K s at s  a s coolant  s temperature s of s  300 s  

K, s equal s to s the s initial  s temperature s of s the s heat s pipe. s The s two s 

dimensional  s model s had s a s total  s length s of s  300 s mm s and s  thickness s was s  

37 s mm. s The s evaporator, s adiabatic s and s condenser s length s was s 100 s 

mm s  each.  s The s  heat s pipe s wall  s and s wick s thickness s was s 6 s  mm s and s  1.5 s  

mm s respectively.  s  
Literature s survey s  indicated s that s most s of s the s researchers s were s 

focusing s on s application s of s flat  s heat s pipes s for s electronics s cooling.  s 

The s demand s of s several  s million s of s heat s pipes s per s month s for s 

electronics s industry s indicates s the s thrust s required s in s this s area s for s the s 

research.  s Most s of s the s work s done s on s heat s pipes s are s on s steady s state s 

conditions.  s There s were s limited s literature s available s on s  

understanding s the s transient s behavior s of s flat  s heat s pipes. s The s 

transient  s characterization s is s essential s to s understand s the s rate s at s 

which s the s heat  s pipe s response s to s heat s load. s In  s actual  s applications s the s 

heat s input s can s vary s  with s time s and s understanding s the s time s constant  s 

of s heat s pipe s is s critical.  s  s The s flat s heat s pipes s works s carried s out s earlier s 

had s a s dedicated s cooling s  mechanism s in s the s form s of s heat s sink s or s a s  

cooling s jacket  s in s condenser s region.  s The s water s cooling s for s  

condenser s region s can s lead s to s complications s in s electronics s cooling s  

design.  s Further s dedicated s cooling s system s adds s to s cost, s weight s and s 

package s space.  s Earlier s a s flat  s heat s pipe s was s developed s without  s a s  

dedicated s cooling s mechanism s for s 3  s W s  power s range s based s on s power s  

dissipation s in s smartphone s processors s [2]. s The s operating s 

temperature s of s  heat s pipe s was s limited s to s 100oC s based s on s electronic s  

devices s limit.  s The s steady s state s test s revealed s the s heat s pipe s can s 

function s at s mounting s orientations s varying s from s 0 s degree s to s 90 s 

degree s when s evaporator s is s at s bottom. s The s studies s conducted s using s  

fan s indicated s the s heat s pipe s range s can s be s extended s by s  using s a s  

dedicated s cooling s mechanism. s  s In s this s work s it s is s attempted s to s 

determine s the s time s constant  s of s  s  developed s heat  s pipe s for s  different  s 

test s conditions.  s The s variation s of s heat s pipe s time s constant s with s 

respect s to s power s variation s and s mode s of s cooling s mechanism s is s 

explored.  s Later s the s  s transient  s behavior s of s  heat  s pipe s is s compared s 

with s dry s heat  s pipe. 

3. Experiment  s Set s up 

A s readily s available s helical s grooved s hollow s copper s pipe s is s used s to s 

fabricate s the s flat s heat s pipe. s The s working s fluid s is s selected s as s water s 

because s of s its s high s merit s number s in s the s operating s temperature s range.  s 

The s heat s pipe s is s wound s with s Nickel-Chromium s wire s to s supply s heat s 

in s evaporator s section.  s  s The s temperature s values s across s the s length s of s 

the s heat s pipe s were s monitored s using s thermocouples.  s The s 

thermocouple s data s are s recorded s as s a s function s of s time s at s intervals s of s  

10 s seconds.  s Initially s the s experiments s were s conducted s at s different s 

mounting s angles s when s condenser s section s is s cooled s by s pure s natural s 

convection. s Later s tests s were s conducted s by s blowing s air s by s fan s on s the s 

condenser s section.  s The s performance s of s the s flat  s heat s pipe s developed s 

was s then s compared s with s dry s heat s pipe s (without  s working s fluid) s to s 

ascertain s its s thermal s performance.  s  
 
 

A Flat s Heat s Pipe s Development 

A s hollow s cylindrical s copper s pipe s of s 3/8" s outer s diameter s (9.53 s mm) s 

with s 15o
 s helical s internal s grooves s was s selected s for s fabrication. s The s 

inner s diameter s of s the s pipe s was s found s to s be s 8.53 s mm. s The s cylindrical  s 

pipe s used s for s fabrication s is s shown s in s figure s 3. s The s pipe s had s a s total s of s 

34 s grooves s of s height s 0.16 s mm s and s width s 0.21 s mm. s The s pipe s used s for s 

fabrication s had s minimum s wall s thickness s to s ensure s minimum s wall s 

thermal s resistance.  s The s cylindrical  s pipe s was s cut s to s a s length s of s 150 s 

mm s and s later s flattened s to s the s required s thickness s using s a s mechanical  s 

press. s The s pressing s operation s was s carried s out s using s a s die s to s ensure s no 

s deviation s in s the s final s dimensions s of s the s spreader.  s Proper s cleaning s of s 

heat s pipe s container s is s essential s as s slightest  s of s impurity s may s  

deteriorate s its s performance.  s The s pipe s was s cleaned s to s remove s macro s 

impurities s like s dirt, s oil s and s micro s impurities s like s traces s of s oxides s 

present s on s the s surface s of s the s pipe. s Immersion s of s the s pipe s in s various s 

chemical s baths s removed s the s macro s impurities.  s The s oxide s impurities s 

were s eliminated s by s heating s the s heat s pipe s container s in s a s hydrogen s 

environment  s furnace. s After s the s cleaning s process, s it s was s ensured s that s 

the s pipe s does s not s come s in s contact  s with s any s contaminants. s A s 0.5 s mm s 

thick s copper s sheet s was s used s to s manufacture s the s end s caps. s The s end s 

caps s were s also s cleaned s following s the s same s procedure s of s that s of s  s the s 

heat s pipe.  s The s end s caps s were s attached s to s the s heat s pipe s by s brazing s 

them s with s a s copper s filler s rod.  s A s leak s proof s  s inspection s was s carried s 

out s after s brazing s as s small s gap s in s the s system s may s cause s air s to s leak s 

inside s the s heat s pipe s and s can s lead s to s non-functionality.  s Later s the s heat s 

pipe s was s attached s to s a s specialized s evacuation s and s charging s rig.  s The s 

pipe s was s evacuated s to s a s vacuum s of s 0.017 s mbar. s Then s distilled s water s 

was s charged s into s the s pipe s through s a s degassing s setup. s The s purpose s of s 

degassing s setup s was s to s remove s the s dissolved s non-condensable s gases s 

(NCG) s from s the s water.  s Avoiding s degassing s process s in s 

manufacturing s will s result s  s in s releasing s of s NCGs s over s a s period s of s time s 

causing s reduction s of s the s effective s length s of s the s heat s pipe. s The s 

fabricated s flat s heat s pipe s had s final s dimension s of s 150 s mm s length,  s 13 s 

mm s width s and s 2.8 s mm s thickness.  s The s volume s of s liquid s charged s in s 

heat s pipe s was s around s 0.25 s cc.  s The s flat s heat s pipe s fabricated s is s shown s 

in s Figure s 4. 

 

 

 
Fig. 3:  Copper s pipe s with s helical s grooves 



International Journal of Engineering & Technology 501 

 

 

 
Fig. 4: Copper-Water s flat s heat s pipe 

B Thermal s Instrumentation 

Nickel-Chromium s (Ni-Cr) s wire s of s “K” s type s thermocouple s was s 

wounded s up s to s a s  length s of s 40 s mm s (evaporator  s area) s above s heat s pipe s 

to s act s as s heating s element.  s Ni-Cr s wire s had s insulation s to s  avoid s short s  

circuit s between s windings s and s a s paste s prepared s by s  mixing s Omega s  

400 s cement  s with s water s was s applied s above s the s windings s to s avoid s 

relocation.  s Later s the s evaporator s region s was s wound s with s fiber s glass s 

insulation s to s restrict  s heat s loss s to s the s ambient.  s Total s six s number s of s  

“K” s type s thermocouples s (Nickel-Chromium/ s Nickel-Alumel) s were s 

instrumented s along s the s heat s pipe s at s a s distance s of s 10 s  mm, s 20 s mm, s  50 s  

mm, s 80 s mm,  s 110 s mm s and s 130 s mm s respectively s as s shown s in s figure s  

5. s The s thermocouple s at s 10 s mm s and s 20 s mm s are s in s the s evaporator s 

section s of s heat  s pipe. s It s is s to s be s noted s that s as s wire s is s used s as s heating s 

element,  s thermocouple s reading s in s evaporator s section s will s read s the s 

wire s temperature.  s The s total s resistance s of s the s heating s element  s was s 

around s 11 s ohms. 
 

 
Fig. 5:  Thermocouple s locations 

C. Test s Set s Up 

The s heat s pipe s was s mounted s vertically s with s evaporator  s at s bottom s  

and s enclosed s by s a s cardboard s box s (100 s mm s length s x s 100 s mm s breath s 

x s 200 s mm s height).  s The s condenser s section s of s 40mm s length s was s 

protruding s outside s the s cardboard s box s and s exposed s to s the s 

environment.  s  s The s  cardboard s box s restricted s heat s loss s from s  

evaporator  s and s adiabatic s section s of s heat  s pipe s to s ambient  s 

environment. s A s  8 s channel s PPI s Unilog s data s acquisition s system s was s  

used s to s record s temperatures s at s intervals s of s 10 s seconds s during s tests.  s 

A s DC  s regulated s power s supply s 0-30 s V/ s 2 s A s (Make: s SIGMA) s  was s  

used s to s  supply s  heat s input s to s the s  evaporator  s section.  s FLUKE s  

multimeter s (Model s 106, s 600 s V s CAT s III) s was s used s to s reconfirm s the s 

voltage s and s current s readings. 

 

 
Fig.  6: Natural s convection s set s up 

 
Fig. 7: Forced s convection s set s up 

The s schematic s of s natural s convection s test s set s up s is s shown s in s figure s 6. s 

The s heat s pipe s was s also s tested s at s different s inclination s angles. s Later s a s 

fan s was s used s to s blow s air s in s the s condenser s section s at s a s velocity s of s 4 s 

m/s s and s 5 s m/s s to s verify s if s the s capacity s of s heat  s pipe s can s be s extended.  s 

The s air s velocity s from s the s fan s was s measured s using s hot s wire s 

anemometer s based s sensor. s The s distance s between s fan s and s heat s pipe s 

was s 50 s mm. s The s test s set s up s schematic s with s fan s is s shown s in s figure s 7. 

4. Steady s State s Performance 

Initially s the s heat s pipe s was s tested s under s natural s convection s for s 3 s W s 

heat s input.  s The s tests s were s conducted s at s different s mounting s angles s 

varying s from s 0 s degree, s 30 s degree, s 45 s degree,  s 60 s degree s and s 90 s 

degree s (horizontal s position s is s 0 s degree s and s vertical  s position s is s 90 s 

degree) s respectively.  s Three s tests s were s conducted s at s each s angle s to s 

ensure s repeatability.  s The s consolidated s heat s pipe s experimental s results s 

at s steady s state s for s all s angles s are s shown s in s a s single s graph s in s figure s 8. s 

The s results s indicate s that s the s temperature s distribution s along s the s heat s 

pipe s is s almost s flat s for s all s orientations s indicating s its s functionality.  s The s 

thermal s resistance s value s is s highest s for s vertical s orientation s (3.3 s K/W) s 

and s lowest s at s horizontal s orientation s (3.1 s K/W) s [2]. s The s overall s heat s 

transfer s coefficient s was s calculated s to s be s around s 255 s W/m2
 s K s for s 

horizontal  s and s dropped s to s a s value s of s 240 s W/m2
 s K s  in s vertical s test.  s All s 

these s calculations s indicated s that s the s heat s pipe s performs s best s in s 

horizontal s orientation.  s Figure s 9 s gives s the s test s results s of s forced s 

convection s test s set s up s conducted s using s a s fan. 
 

 
Fig. 8: Natural s convection s set s up s results s – s steady s state 

 
Fig. 9: Forced s convection s set s up s results s – s steady s state 
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The s steady s state s performance s of s water s filled s heat s pipe s developed s 

was s compared s with s dry s  heat  s pipe s of s same s external  s dimensions s in s 

figure s 10. s Dry s heat s pipe s is s an s empty s heat s pipe s with s no s fluid s filled s 

inside s it. s This s empty s heat s pipe s represents s a s simple s conductor. s All s  

the s tests s were s done s in s vertical  s orientation s to s compare s the s heat s pipe s 

performance.  s The s maximum s evaporator s temperature s for s dry s heat  s 

pipe s was s around s 110.8oC s compared s to s 90.2oC s for s the s water s filled s 

heat s pipe..  s Hence s the s temperatures s and s thermal  s drop s across s empty s  

heat s pipe s is s higher s compared s to s heat s pipe. s It s is s evident s from s the s 

linear s curve s fit s of s temperature s across s axial s length s which s indicated s 

that s slope s of s empty s heat s pipe s is s higher s (0.297) s than s that s of s  water s 

filled s heat s pipe s (0.084). 
 

 
Fig. 10: Steady s state s perfroamce s comaparison s with s simple s 

conductor 

5. Transient  s Performance 

The s data s logger s was s capable s of s measuring s temperature s in s intervals s of 

s every s 10 s seconds. s All s the s experiments s were s carried s out s for s nearly s  

2500 s seconds s to s ensure s steady s state s is s reached. s The s time s constant s of s 

the s heat s pipe s is s defined s as s the s time s it s takes s for s the s outside s surface s 

temperature s in s the s evaporator s section s to s reach s its s 63.2% s of s the s 

maximum s temperature s rise s [12]. s A s small s time s constant s indicates s the s 

heat s pipe s can s quickly s reach s its s work s capacity.  s  

A Natural s Convection s Tests 

The s temperature s rise s history s from s initial s ambient  s condition s of s heat s  
pipe s at s evaporator s section s (20 s mm s location) s for s 3 s W s tests s conducted s 

at s different s orientations s under s natural s convection s is s given s in s figure s 

11. s The s temperature s rise s values s from s ambient  s is s also s tabulated s in s 

Table s 1. s At s horizontal s orientation s the s total s temperature s rise s was s 

58.6oC s and s for s vertical s orientation s it s was s 65.2oC. s The s time s constant s 

for s the s above s tests s are s given s in s figure s 12. s The s time s response s varied s 

from s 249 s seconds s to s 266 s seconds.  s The s graphical  s trends s shows s the s 

mounting s angle s has s no s significant  s impact s on s time s constant s value. 
 

Table 1: Temperature s Rise s at s 3 s W s ( s NAtural s Convection) 

Test s Angle Temperature s Rise 

s , s 
o
C 

63% s Temperature s Rise 

s , s 
o
C 

0 s degree 58.6 36.9 

30 s degree 61.9 39.0 

45 s degree 63.3 39.9 

60 s degree 63.2 39.8 

90 s degree 65.2 41.1 

 

 
Fig. 11: Temperature s history s at s evaporator s location 

 
Fig. 12: Time s constant s at s different s orientations s for s 3 s W s 

(natural s convection) 

To s study s the s effect s of s power s variation s under s natural s convection s the s 

tests s were s conducted s at s 2 s W s in s vertical s orientation. s The s tests s were s not 

s conducted s above s 3 s W s heat  s input, s as s the s maximum s temperature s of s  

heat s pipe s may s exceed s the s allowable s temperature s limit s  s of s 100oC.  s The s 

graph s shown s in s figure s 13 s compares s the s temperature s rise s of s 3 s W s and s 2 s 

W. s At s 2 s W s power s input, s the s temperature s rise s of s  the s heat s pipe s at s 

evaporator s was s 45.5oC s against  s 65.2oC s for s 3 s W s power. s  s The s 

experimental  s results s indicate s the s time s constant s for s 3W s was s 266 s 

seconds s and s 275 s seconds s for s 2W. s This s is s in s line s with s the s trend s 

observed s by s Wang s and s Vafai s [13] s that s as s power s number s increases s 

time s constant s value s decreases. s  
 

 
Fig 13: Power s variation s study s under s natural s convection 

B Forced s  s Convection s Tests 

The s forced s convection s tests s were s conducted s at s two s different  s air s 

velocities s of s 4 s m/s s and s 5 s m/s.  s Tests s were s conducted s at s three s different  s 

input s powers s viz. s 2 s W, s 3 s W s and s 5 s W. s The s temperature s rise s and s time s 

constant s values s for s the s above s tests s are s shown s in s figure s 14 s and s figure s 

15. s The s time s constant s value s was s 132 s seconds s for s 2 s W s power s against  s 

108 s seconds s for s 5 s W s tests s for s air s velocity s of s 4 s m/s.  s The s time s constant  s 

value s for s input s power s of s 5 s W s with s 5 s m/s s is s 98 s seconds.  s This s indicates s 

that s the s time s constant s value s for s heat s pipe s decreases s with s increase s in s 

air s velocity s experienced s by s the s condenser s section.  s Also s the s time s 

constant s decreases s with s increase s in s heat s input. s  
 

 
Fig.14: Forced s convection s results s at s 4 s m/s 
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Fig. 15: Forced s convection s results s at s 5 s m/s 

C Comparison s with s Simple s Conductor 

The s tests s results s comparing s the s temperature s rise s in s evaporator  s 

region s and s condenser s region s of s filled s heat s pipe s and s dry s heat s pipe s is s 

shown s in s figure s 16 s and s figure s 17. s The s time s constant  s of s dry s heat s pipe 

s was s 247 s seconds s which s is s less s than s 266 s seconds s for s  filled s heat s pipe. 

s But s in s condenser s section s the s response s time s of s dry s heat s pipe s was s 306 

s seconds s against  s filled s heat s pipe s of s 303 s seconds.  s  s  s The s initial  s 

response s of s  temperature s for s dry s  heat s pipe s was s higher s at s the s  

evaporator  s end s as s the s cross s sectional  s area s of s copper s available s for s  

heat s transfer  s is s less s for s  dry s heat s pipe s as s air s inside s the s empty s  pipe s 

provides s more s resistance s to s heat s flow s because s of s its s poor s 

conductivity.  s In  s  filled s heat s pipe s during s the s initial  s stage s the s phase s 

change s phenomenon s of s water s provides s thermal  s inertia s for s  

temperature s rise. s In s the s condenser s section s the s response s time s of s  

filled s heat s pipe s is s better s than s the s dry s heat s pipe.  s This s indicates s the s 

filled s heat s pipe s has s a s better s heat  s transfer s capability s compared s to s dry s  

heat s pipe. s  

 

 
Fig. 16: Evaportor s region s temperature s rise 

 
Fig. 17: Condensor s region s temperature s rise 

6. Conclusion 

The s flat s heat s pipe s finds s wide s range s of s applications s in s electronics s 

cooling. s  s Their s thermal s management  s application s include s LED s 

display s systems, s automotive s multimedia s systems, s smartphone s 

processors s etc. s In s Smartphone s processors s and s LED s display s 

application s the s power s numbers s can s be s less s than s 10 s W. s Hence s the s 

current s work s was s focused s on s developing s a s flat s heat s pipe s using s helical 

s grooved s copper s pipe s to s meet  s the s lower s power s applications s in s the s 

range s of s 3 s W s to s 5 s W. s Readily s available s helical s grooved s copper s pipe s 

was s flattened s to s be s used s as s the s heat s pipe s container s avoiding s the s 

expensive s machining s process s for s groove s cutting.  s The s developed s flat s 

heat s pipe s was s tested s under s natural s convection s mode s at s 3 s W s power s 

input s at s different s mounting s angles.  s Further s tests s were s done s at s 5 s W s to s 

prove s that s the s heat s pipe s range s can s be s extended s by s using s a s dedicated s 

cooling s mechanism.  s The s performance s of s heat s pipe s was s also s 

evaluated s by s comparing s with s empty s heat s pipe s i.e. s without s fluid,  s 

representing s a s simple s heat s conductor.  s The s earlier s steady s state s studies s 

indicated s that s the s flat s heat s pipe s was s functioning s satisfactorily. s But s it s 

is s also s imperative s to s understand s the s transient s behavior s of s heat s pipe s to s 

understand s the s startup s transient s characteristics.  s The s time s constant  s of s 

heat s pipe s was s calculated s for s different s test s conditions s and s was s found s 

to s be s varying s between s 249 s seconds s to s 266 s seconds s for s 3W s power s 

under s natural s cooling s mode.  s This s time s constant s showed s a s decreasing s 

trend s with s increasing s power s under s forced s convection s cooling s 

mechanism.  s The s time s constant  s value s was s higher s for s filled s heat s pipe s 

compared s to s dry s heat s pipe s in s evaporator s region s due s to s phase s change s 

phenomenon s happening s in s heat  s pipe. s The s temperature s response s time s 

and s rise s pattern s  s at s condenser s section s indicated s that s the s filled s heat s 

pipe s had s better s heat s transfer s capability s than s dry s heat s pipe. 
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