

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 1060-1065

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Scalable Execution of KNN Queries using Data Parallelism

Approach

Kalpana V. Metre
1
*, M. U. Kharat

2

1,2 Department of Computer Engineering,

MET’s Institute of Engineering, Nashik, India.

*Corresponding author E-mail: kvmetre@gmail.com

Abstract

In recent years, real-time data-oriented applications such as sensor networks, telecommunications data management, network monitoring
are required to process various continuous queries on unbounded data streams. A lot of work has been done to deal with the computa-
tional complications in constant processing of continuous queries on unbounded, continuous data stream. The K-nearest neighbor algo-
rithm (KNN) is a well-known learning method used in a wide range of problem-solving domains e.g., network monitoring, data mining,
and image processing etc. The efficient and scalable processing of multiple continuous queries on dynamic data items requires query
indexing and data indexing. Query processing algorithms used on static databases are not well suited to handle dynamic continuous que-
ries over high dimensional data sets. It is better to build the index for queries which is finite rather than to build the index for data which

is infinite. A divide-and-conquer approach is used for indexing and searching for K-nearest neighbors. The approach significantly will
reduce the space complexity and will scale well with the increasing data size. The hybrid indexing approach using grid and a K-
dimensional tree will reduce the space cost as well searching cost. The data parallelism will provide scalability of continuous queries
over high-volume streams.

Keywords: Data stream; Grid indexing; KNN; R-tree; Scalability

1. Introduction

In recent years, continuous queries process real-time data streams
in applications such as sensor networks, network monitoring,
stock market etc. Unlike regular queries, a continuous query is
evaluated regularly over a period of time. Traditional data pro-
cessing algorithms are not well suited to handle various continu-
ous queries over data streams. The previous researchers used ei-
ther R-tree based indexing for data which is continuous and infi-
nite. The maintenance and updating cost of those disk-based in-

dexing is more than the query response time. Some of the earlier
methods are not capable of handling the multi-dimensional data
stream. If the response time of continuous query processing is
larger than the rate of the input stream tuples, the delays are ac-
cumulated and it prevents the system from keeping up with the
input stream rate. In many real-time applications, continuous KNN
queries are processed on high dimensional dynamic data items.
The K-nearest neighbor algorithm (KNN) is a well-known learn-
ing method or statistical search used in a numerous applications

such as sensor networks, data mining and image processing etc.
The advantages of KNN algorithm include that it is fairly simple
to implement and it is well suited for multi-modal applications.
The KNN search implementations have high computational costs,
especially when used with a large amount of high dimensional
data. Many KNN implementations degrade in performance as the
data becomes high dimensional. Another drawback of KNN con-
cerns its significant memory requirements, especially for indexing

massive high dimensional data. The indexing techniques for the

efficient and scalable processing of multiple continuous queries on
dynamic data items include query indexing and data indexing.
With dynamic data, frequent updates to the index on data are inev-
itable. The data indexing becomes expensive as the data is not

persistent, but it is in large volume. So, a new approach is sug-
gested to build the index for queries which is finite rather than to
build the index for data which is infinite. The rate of change of
queries is low compared to that of data stream, so the query index-
ing methods can reduce the index maintenance cost [1]. This finite
index on queries can be accommodated in memory which results
in efficient execution of queries avoiding memory access frequent-
ly. The techniques used for building the index on queries include

mostly grid indexing and tree-based indexing. The R-tree-based
methods are suitable for location-based applications, but due to
overlapping structure of tree, the methods discussed in [2] suffer
from high maintenance cost. This approach gives good perfor-
mance only for small numbers of queries.
The grid indexing divides [3][4][5] the d-dimensional indexing
space into equal-sized cells and these cells are used for query in-
dexing. It can give lower maintenance cost for dynamic queries
and better performance than the other indexing such as tree-based

methods [5]. The continuous queries can be static as well as dy-
namic. In applications such as location-based services, we need
dynamic queries. The query indexing approaches need to tackle
changing continuous queries [7] and KNN queries [10]. H. Wang
et al. proposed an infrastructure MOVNET which combined R-
tree structure to store the road network connectivity information
and grid index to efficiently process moving object position up-
dates. The limitation is that it can handle only stationary network

[8]. W. Choi et al. introduced a new indexing structure that re-

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 1061

fines cell structure adaptively with objects’ movement to handle
data skew and utilizes an overlapping technique to reduce the
storage requirements [9]. Another challenge is to handle the vol-
ume and density of streaming data and filter massive high dimen-
sional data using query index. To address these research challeng-
es, the hybrid approach i.e. cell indexing and K-dimensional B-
tree indexing for query indexing [6] for range queries is used so
that the grid-based index will accommodate frequent updates

properly and show a better performance than the tree-based ap-
proaches. The overlap-free tree approach requires less space so
that the query index will be maintained in the main memory. The
hybrid index structure will exploit the benefits of both the tree-
based and the grid-based indexing structures.
The divide-and-conquer approach for indexing queries which are
less compared to the massive dataset is proposed. Using the space
partitioning approach, the queries will be indexed in grids. A focus

of this work is to improve the performance of the KNN search and
to demonstrate its performance in a real-world problem. It will
support fast and exact KNN queries without scanning the entire
data set for indexing. A solution based on a framework consisting
of three major components is proposed: (1) Constructing the hy-
brid index for query points. (2) Searching for nearest neighbors
for the continuous queries parallel, 3) Finding exact K-nearest
neighbors for each and every query. Section 2 discusses related

work done by various other researchers in this area. Section 3
presents in detail the combined approach and all the related con-
cepts. Section 4 includes discussion and expected outcome. Sec-
tion 5 concludes the paper with conclusion. The continuous query
processing can be explained as shown in Figure 1.

Fig. 1 : Continuous Query Processing

2. Related Work

The various research techniques have been proposed for finding
KNN which has applications in various fields such as network

monitoring, moving object recognition etc. The various research-
ers have proposed different indexing techniques for KNN search
or similarity search. For KNN search, indexing techniques can be
deployed either on massive high dimensional data or the queries
submitted to the system. The data indexing techniques builds the
index for high dimensional data streams. R-tree is used for index-
ing locations of moving objects for the execution of location based
continuous queries [11]. The grid indexing method is used to di-

vide the d-dimensional indexing data space into recursive cells to
index position of moving objects [9]. Generally, the data indexing
methods are preferred when the cost of index maintenance is in-
significant [4]. But in data streams, data is continuous, frequent
updates to the data index are necessary. The queries are finite and
rate of change of queries is less than the continuous data streams.
The query index can be accommodated in main memory whereas
disk based indexing is required for the data. The indexing for que-

ries can reduce storage cost as well as maintenance cost of index
[5][1]. Therefore, the query indexing suits better for real-time
applications. The query indexing methods are generally cell-based
or tree-based. The tree-based approaches generally used the R-tree

and its variants for indexing. The authors proposed R-tree based
query indexing for monitoring moving objects [2]. However, it
does not provide satisfactory query performance for data streams,
because of the overlapping nature of non-leaf sibling of a R-tree.
Every data object in a data-stream may have to traverse through
the tree more than once for checking satisfying query conditions.
To reduce the limitations of traditional tree-based indexing, a few
non-overlapping tree structures were used for continuous queries’

indexing [1]. Park et al. used KDB-tree indexing for RFID based
continuous queries [1] and the KDB-tree provides overlap-free
single-path traverse [12]. Due to the inherent structure of trees, the
overlap-free tree requires high index maintenance cost. The cell
indexing methods use grid and the indexing space is partitioned
into equal sized grids/cells to index queries [3][4][5]. S. Prabhakar
et al. used grid cells in hierarchical manner to organize skewed
queries to speed up the execution of continuous range queries over

moving objects [13]. In cell-based indexing, accessing the object
requires O(1) query efficiency, cell-based indexing outperformed
the tree-based approaches for query performance [5]. The authors
used hierarchical cells to store queries which are skewed to speed
up continuous range queries execution over moving objects. The
costs of time and space are comparatively are high as the building
and rebuilding of the indexing structures. The authors introduced a
DSI –Distributed Strip Index (a data partitioning index) and

DKNN algorithm for distributed query processing [14]. The cli-
ents process queries on the partial strip index provided by the
server in parallel. It results in integration overhead and the com-
munication cost overhead. The hybrid indexing is used for range
queries which are used less frequently compared to KNN queries
[6]. The index on data objects as well as queries is built. Re-
evaluation of all queries with movement of objects is done keep-
ing the constraint on velocity of object movement. It gives good
performance only for small numbers of queries [2]. One of the

limitations is that it cannot accommodate the arrival of new que-
ries. The some of the previous methods are not capable of han-
dling the multi-dimensional data stream. If the response time of
continuous query processing is larger than the rate of the input
stream tuples, the delays are accumulated and it prevents the sys-
tem from keeping up with the input stream rate. To keep up with
the rate of the input stream, an efficient data parallel and scalable
system for executing KNN continuous queries can be used. A

number of solutions have been introduced to reduce the cost of the
KNN search. The quality and usefulness of these various solutions
are limited by the computational time complexity of computing
queries as well as the space complexity of the relevant search data
structures. Data space partitioning can reduce redundant distance
computations while searching for k nearest neighbours in a high
dimensional data domain. The selection of appropriate data struc-
tures is an integral part of any efficient search algorithm design.

The hybrid indexing technique balances both time and space com-
plexities to achieve an overall reduction in both. One of the big-
gest challenges for a Data Stream Management System is to han-
dle continuous data streams considering the memory constraints
and without any random access to the data. Window techniques
focus on recent portion of the data. The recent data can be taken in
terms of n objects or the objects during ‘t’ time span. L. Golab et
al. used time interval or timestamps for generating windows for

each single processing step [15]. As in [16], it is discussed that
window is dynamically resized on the incoming data and a user-
specifiable confidence value δ ϵ (0,1). A new method adaptive
windows using sliding windows with re-computation of window
size as per the rate of change in the incoming data is discussed.
So, it is assumed that adaptive window stores the currently rele-
vant data. The windowing can be done easily by using a fixed
sliding window. Without disregarding the past data, recent data

will always prominent influence on the computation to be per-
formed. The batch-based partitioning strategy groups a number of
consecutive windows into batch and assigns them to a particular
partition. The key idea behind this strategy is to reduce the need
for tuple replication to multiple partitions by reducing the overlap

Continuous

Query Pro-

cessing

Data

Stream
Query

Results

Continuous

Queries

1062 International Journal of Engineering & Technology

across those partitions. It avoids repetition of tuples in a window
[23].
Continuous queries are divided among the sub-queries. The simu-
lated annealing algorithm was used for deriving sub-queries. The
pull based and push based data dissemination mechanisms are
used to send only those changes that are of interest to a user [17].
Using continuous queries, on-line decision making in applications
such as network monitoring, stock exchange, often involves sig-

nificant amount of time-varying data. In network monitoring data
packet information is used as dynamic data items. This can be
used for denial of service and intrusion detection [18]. The feature
selection can be efficient and effective using clustering approach
for finding the nearest neighbor from high dimensional dataset.
Graph clustering method is used for feature selection [19]. In large

multimedia database, for similarity search on images, the combi-

nation of textual pre-filtering and image re-ranking lists in a late
fusion algorithm is used [20]. This approach provides the accura-
cy of the result. The authors have discussed various similarity

measures to find the exact nearest neighbors. They discussed
about clustering techniques for Content-Based Feature Extraction
from Image [21]. Now days, Graphical processing Unit (GPU)
receive lot of attention. Use of GPU is helpful to accelerate analy-
sis task with a provision that the program will be executed concur-
rently on CPU and GPU [22]. The GPU works better for single
instructions multiple data using data parallelism and it is suited for
solving the problems in data stream management that can be ex-

pressed as data-parallel computations. By exploiting the parallel
processing power of the GPU, it will be possible to significantly
scale the number of dynamic data objects, while achieving an

acceptable level of performance.

1) Copy processing data.
2) Instruct the processing.
3) Execute in parallel in each core.
4) Copy the result.

Figure 2: CPU-GPU processing flow [22]

3. System Overview

For continuous KNN query processing on unbounded data, query
pre-processing and processing framework using a data-based par-
allelism approach is discussed. The graphical processing unit

based design will achieve a high level of concurrency and it will
also reduce the cost of communication and coordination. It will
enable to handle very large datasets. The detailed system architec-
ture is as shown in Figure 3.

This study focuses on the challenges of query processing in dy-
namic environment considering the dynamic continuous data as
well as the changing queries.
Problem Formulation:
The data stream S consisting of continuous data set of tuples is

considered. S= {ti |i [1, + ∞)}.
Q is set queries which are dynamic.

MAX be the threshold value for the maximum number of queries.

Continuous KNN query processing consists of following phas-

es:
1) Continuous KNN Query Submission:
 The continuous queries of type K-Nearest Neighbors (KNN) are
 given by the user.

2) Acquisition of Data Stream and dividing data stream into sub-
 streams:

The dataset of dynamic data items or moving objects can be used.
As the user is interested in recent and snapshot data of unbounded
continuous data stream, it is necessary to use the windowing tech-
niques. There are different techniques to extract recent data from
the whole data set. In fixed sliding window technique, the win-

dows can be either fixed by including only the most recent n data
points or by taking only the most recent t time units of data (where

n and t are constants). The selection of window size is very im-
portant.

3) Execution of KNN queries:

a) Construction of Index for Query/ Update of grid and KD tree :
The query preprocessing will be done to prepare a query index for

all running queries. The hybrid approach is used for indexing i.e.
grid based indexing and K-dimensional B tree indexing as shown
in Figure 4. Whenever a new query is submitted or existing query
is updated, the query index needs to be updated [6].

The queries are distributed into a number of grid cells. Let Q be a
set of queries and a MAX be the threshold value for the maximum
number of queries in a grid cell. The grid cell will be divided into

sub cells in d-dimensional space used for indexing. The cell hav-
ing the queries less than the threshold value MAX will not be
partitioned into sub cells and a cell having queries greater than the
threshold value MAX, will be divided into sub cells. The parti-
tioning of cell into sub cells will be continued recursively until no
cell has queries greater than threshold value MAX. The KDB tree
index will be built for every grid cell where the each node will
denote range boundaries for the particular cell. The KDB-tree

consists of leaf nodes and internal nodes. Each internal node
represents the region of the cell and contains maximum M index
values. The index entries contain the region of child. The regions
in all the nodes at the same level are not overlapping. Each leaf
node contains actual query data i. e. m query entries in the particu-
lar cell.

b) Finding the exact KNN objects:

The filtering of the data object will be done in parallel on sub-
streams. For each element from the data sub-stream, the cell will
be identified and the KDB tree for that cell will used to search for

the query for the data element and it will be done in parallel for
each sub-stream. The distance between data element and query is
calculated using following formula to find out exact KNN objects
from data stream.

International Journal of Engineering & Technology 1063

Fig. 3: Query indexing and Data-based parallelism for Continuous Query Processing

Fig. 4: a) Grid Indexing for Queries b) KDB Tree Indexing for each cell

Euclidean distance:

The Euclidean distance is calculated between each data object in
the set of objects for the query and the query object.

Algorithm for updating the query index :

Algorithm UpdateQueryIndex (T, q, q1)
//Input: T - CKDB-Tree for Query Index, q - query to be changed,
q1 - new query
// Output: Updated T
begin
cell = locateCell(T, q)
for cell ∈ T

node = locateNode(cell.tree, q)
if (node != NULL) then

Delete q from cell.tree and insert q1 into
cell.tree
end
end

Algorithm for searching the query index:

Algorithm SearchQueryIndex (T, DS)

// Input: T - CKDB-Tree for Query Index, DS – Data sub-stream
// Output: ResultSet
begin
for each data object t ∈ DS

cell = locateCell(T, t)
searchKDB-tree (cell.tree.root, t, ResultSet,d)
end
return ResultSet
end

Algorithm searchKDB-tree (node, t, ResultSet , d)
//Input : t – node of KDB tree, d- threshold value for Euclidean
distance
// Output : Resultset
begin
 if (node is a leaf node) then
for (each query data q in node) do
if (dist (q, t) < d) then
ResultSet = Union (ResultSet, t)

end
 else

User Queries

Data Stream Windowing
Data Stream

Query Index Generation

Display Query
Outcome

CPU

GPU Searching the query index in
parallel for each data sub-
stream

Finding the an-
swers to the

queries

Query Outcome

d

i

ii dqdqd
1

2
),(

1064 International Journal of Engineering & Technology

node = findChildNode(t, node.children)
searchKDB-tree (node, t, ResultSet,d)
end
 The update cost (upper bound) for query is computed from the

height of the tree h. The number of leaves in KDB-tree Nleaf is

computed as

Nleaf = (Max /m) (1)

where Max is threshold value for the maximum number of queries
in a grid cell and m is capacity of leaf node.
The number of query indexes in (h-1) level is estimated as

N(h-1) = Nleaf / M (2)

where M is the capacity of internal node in the tree.
The height of the tree h can be computed as

h =] (3)

4. Discussion and Expected Outcome

To evaluate the queries on continuous data stream, where the que-
ries are also changing, the three measures are considered i.e. index
storage cost, index maintenance/update cost and query execution
cost. The various alternatives of R-tree and B-tree are used for the
indexing of queries as well as data. Some index structures have
less space complexity and others may have less time complexity

and they support different types of queries viz. range queries ,
circle query or point queries and different data types of datasets
such as linear or multidimensional data. Most of the tree based
index support point query to find nearest neighbors and single
dimensional data efficiently. But in case of processing of continu-
ous queries on multidimensional data, specific data structure is
required. B-tree and its variations support point query and single
dimensional data efficiently while R-tree and its alternatives sup-

port multidimensional data and range query efficiently. In R-tree,
due to overlapping of non-leaf nodes, traversing a tree for a query
by a data tuple can be more than one to get the result. This tech-
nique results in high maintenance cost in case of dynamic queries.
Using B+tree, it is possible to store large key values. The time
required to search a particular key from the tree is proportional to
the height of the B-tree and it will be comparatively less. But, it is
not preferable to use B-tree for the queries which consist of
searching on multiple keys. This technique also results in high

maintenance cost in case of dynamic queries. The adding or re-
moving queries is done very efficiently with the grid of cells. This
indexing is proved to outperform the R-tree based query index.
During query reevaluation, query lists are used to find all the que-
ries. As the number of cells is increased, it reduces the average
number of queries for a cell thereby reducing the processing time.
The KDB-tree usually outperforms than other multi-dimensional
indexes for a query, because it provides a single-path traverse of

the tree. Dynamic insertion and deletion of object is balancing.
The searching the query in KDB-tree can be done efficiently.
KDB-trees combine properties of KD-trees and B-trees. The mul-
tidimensional search efficiency of balanced KD-trees and the I/O
efficiency of B-trees is combined in the KDB-tree.
As the queries are not static, the index maintenance cost using the
hybrid approach will be significantly less compared to tree based
approaches where the frequent restructuring of the tree will take

place with changing queries. The hybrid approach will show the
relatively better performance in storage cost and query execution
cost compared to cell indexing as the overlap-free K-dimensional
tree structure is used

5. Conclusion

For continuous query processing, it is suggested to build the index
for queries which is finite rather than to build the index for data
which is infinite. The rate of change of queries is low compared to
the data stream, so the query indexing methods can reduce index
maintenance cost. The divide and conquer approach can be used
for the index generation for queries. The hybrid indexing approach
will outperform the existing techniques for continuous query proc-
essing for the data stream of dynamic data items. The parallel

filtering of data objects will provide scalability of continuous
KNN queries on massive high dimensional data with more accu-
racy. This technique of indexing and processing of queries bal-
ances both time and space complexities to achieve an overall re-
duction in both.

References

[1] J. Park, B. Hong, and C. Ban, “A continuous query index for pro-

cessing queries on RFID data stream,” Proceeding. of 13th IEEE

International Conf erence on Embedded Real-Time Comput. Syst.

Appl., (2007), pp. 138–145.

[2] S. Prabhakar, Y. Xia, D. Kalashnikov, W. G. Aref, and S.

Hambrusch, “Query indexing and velocity constrained indexing:

Scalable techniques for continuous queries on moving objects,”

IEEE Transactions on Comuters, vol. 51, no. 10, (Oct. 2002), pp.

1124–1140.

[3] C. Bohm, B. C. Ooi, C. Plant, and Y. Yan, “Efficiently processing

continuous k-NN queries on data streams,” in Proceeding of IEEE

23rd International Conference on Data Engineering., (2007), pp.

156– 165.

[4] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbour

queries over moving objects,” in Proceeding of . 21st International

Conference on Data Engineering, (2005), pp. 631–642.

[5] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch, “Main

memory evaluation of monitoring queries over moving ob-

jects,”Distributed Parallel Databases, vol. 15, (2004), pp. 117–132.

[6] Ze Deng, Xiaoming Wu, Lizhen Wang, Xiaodao Chen, Rajiv

Ranjan, Albert Zomaya, and Dan Chen, “Parallel Processing of

Dynamic Continuous Queries over Streaming Data Flows”,

IEEE Transac tions On Parallel And Distributed Systems, Vol. 26,

No. 3, (March 2015) .pp. 834-846.

[7] B. Gedik, K. -L. Wu, P. S. Yu, and L. Liu, “Processing moving

queries over moving objects using motion-adaptive indexes,”IEEE

Transaction on Knowledge and Data Engineering., vol. 18, no. 5,

(June 2006), pp. 651–668.

[8] Haojun Wang and Roger Zimmermann, “ Processing of Continu-

ous Location-Based Range Queries on Moving Objects in Road

Networks “, IEEE Transactions On Knowledge And Data Engi-

neering, Vol. 23, No. 7, (July 2011), pp. 1065-1078.

[9] W. Choi, B. Moon, and S. Lee, “Adaptive cell-based index for mov

ing objects,” Data and Knowledge Engineering, vol. 48, (2004, pp.

75–101.

[10] F. Liu and K. A. Hua, “Moving query monitoring in spatial network

environments,” Mobile Netw. Appl., vol. 17, pp. 234–254,2012.

[11] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “In-

dexing the positions of continuously moving objects,” in Proc.

ACM SIGMOD Int. Conf. Manage. Data, (2000), pp. 331–342.

[12] J.T. Robinson, “The K-D-B-tree: A search structure for large multi-

dimensional dynamic indexes,” in Proc. ACM Sigmod Internation-

al. Conference on Management of Data, (1981), pp. 10–18.

[13] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Hambrusch,

“Efficient evaluation of continuous range queries on

movingobjects,” in Proc. 13th International Conference on Data-

base Expert System Applications, (2002), pp. 1–10.

[14] Ziqiang Yu, Yang Liu, Xiaohui Yu, and Ken Q. Pu, “Scalable Dis-

tributed Processing of K Nearest Neighbor Queries over Moving

Objects”, IEEE Transactions On Knowledge and DataEngineering,

Vol.27, No.5, (May 2015), pp. 1383-1396.

[15] L. Golab and M. T. € Ozsu, “ Issues in Data stream management ”

ACM SIGMOD Rec., vol. 32, (2003), pp. 5–14.

[16] Albert Bifet, Ricard Gavald, “Learning from Time-Changing Data

with Adaptive Windowing” Proceedings of the Seventh SIAM In-

ternational Conference on Data Mining, (2007)

[17] Manisha B. Thombare, K. V. Metre, “Query Optimization and Exe-

cution of Dynamic Data Items in Network Aggregation Environ-

ment”, Elsevier , (2014) , pp. 1406 -1413.

International Journal of Engineering & Technology 1065

[18] M. Thombare, K. V. Metre, “ Aggregation Environment for Query

Optimization in Network Monitoring”, International Journal on Re-

cent and Innovation Trends in Computing and Communication

Volume: 2,Issue: 6 (2014), pp. 1515 – 1518.

[19] H. D. Gangurde, K. V. Metre, “Clustering based Feature Selection

from High Dimensional Data”, International Journal on Recent and

Innovation Trends in Computing and Communication , Volume: 3 ,

Issue: 6 , (2015), pp. 3556 – 3560.

[20] Trupti Atre, K. V. Metre, “ MIRS: Text Based and Content Based

Image Retrieval International Journal of Engineering Science and

Innovative Technology (IJESIT) Volume 3, Issue 4, (2014), pp.

579-584.

[21] M. U. Kharat, R. P. Dahake, K. V. Metre, Feature Dimension Re-

duction for Content-Based Image Identification, Book Chapter

(Clustering Techniques for Content-Based Feature Extraction

From Image) , IGI Global, (2018), pp. 100-121.

[22] K. B. Deshmukh, M. U. Kharat, “Accelerating Smith-Waterman

Alignment Based on GPU”, Journal of Advanced Research in

Computer Science and Software Engineering”, Volume 5, Issue 5,

(2015), pp. 1162-1164.

[23] Cagri Balkesen and Nesime Tatbul, “Scalable Data Partitioning

Techniques for Parallel Sliding Window Processing over Data

Streams”, 8th International Workshop on Data Management for

Sensor Networks (DMSN) (2011)

