

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 578-585

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

An Efficient Makespan Model for Hybrid Dual Parallel

Computing Framework

Wahida Banu
1*

, Nandini N
2

1Research Scholar,VTU, Dr.AIT Research Centre Bangalore

2Associate Professor, VTU, Dr.AIT.,Bangalore
*Corresponding Author Email: wahidanisar@gmail.com

Abstract

MapReduce (MR) is the most widely adopted and used computing platform for processing complex scientific and data intensive
application. Hadoop MapReduce (HMR) is widely used MR framework across various organization due to its open source nature. Cloud
service provider (CSP) such Azure HDInsight offers computing resources to its user and only pays for their use. MapReduce framework
currently been used are not efficient due to sequential computing of Map and Reduce phase. As a result, incurs higher computing cost and
exhibit underutilization of cloud resources. Minimizing cost of execution on such platform is most desired. To overcome research
challenges, this work firstly present Hybrid Dual Parallel Computing (HDPC) framework. HDPC offers parallel computation of Map and

Reduce phase. To further enhance resource utilization parallel execution of map and reduce operation is carried out considering multi-
core environments available with virtual computing workers. Lastly, this work presented job makespan/execution model and working
structure of HDPC framework. Experiment are conducted on Microsoft Azure HDInsight cloud platform considering stream and non-
stream application to evaluate performance of HDPC framework over existing computing model. The outcome shows significant
performance improvement in terms of execution time. Overall good correlation is seen among practical execution and theoretical
execution outcome shows proposed HDPC framework is robust, scalable, cost efficient and support dynamic analysis on cloud computing
environment.

Keywords: Big data, Bioinformatics, Cloud computing, GPU, Hadoop, Linear regression, MapReduce, Multi-core, Parallel computing.

1. Introduction

Cloud computing play a major role for attaining scalable computing
for scientific and data intensive application. The cloud computing
adopts distributed architecture which is capable of processing large
amount of data collected by various organization such as social
network, sensor network, bioinformatics etc. Performing scalable

computing on these unstructured data is most desired across
organizations. The exiting model such as Phoenix [1], Mars [2] and
Dryad [3], and Spark [4] are not efficient in performing in real-time
analysis on continuous/stream data. Google came up with parallel
computing architecture namely MapReduce framework [5] for
performing real-time analysis for scientific and data intensive
applications. Among all Hadoop MapReduce (HMR) [6] is the
most widely used and adopted [7] framework due its open source

nature and ease of deployment, and scalability.
The HMR is composed of Map, Shuffle, Sort and Reduce phase. In
Map phase it read all input data and divide it into chunks of small
data and perform execution parallel across different virtual
machine. Shuffle phase begins with completion of Map phase that
collects the intermediate output from all the Map task. A sort
operation is performed on the intermediate output of map phase.
For simplicity sort and shuffle phases are cumulatively considered

in the shuffle phase. Post completion Reduce phase is initialized. In
this phase it reads the intermediate output and aggregate the user
defined functional output and store it in Hadoop distributed file
system (HDFS). Detail of Hadoop MapReduce execution can be

obtained from [6]. The basic architecture of Hadoop MapReduce
framework is shown in Fig. 1.

Fig. 1: The architecture of Hadoop MapReduce framework

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 579

HMR framework suffers from number of drawback such as it
incurs buffer concurrency among jobs and heavy disk read seeks.
As a result, incurs I/O overhead and increase execution time [8].
Further, HMR scheduler does not considers performance parameter
such memory requirement and multi core environment for linear
scalability effecting performance [9] and also considers
homogenous map execution time considering homogenously
distributed data, which is not true [10]. As a result, cloud resource

are not utilized efficiently [11]. HMR adopts serial execution
strategy adopted i.e., post completion of Map phase reduce is
initialized. As a result, incurs higher cloud expense and effects
performance [12]. HMR does not offer flexible pricing [13],
scalability issues due to cluster based nature of HMR and are not
efficient for streaming data analysis [11]. Recently number of
optimization and makespan approaches has be presented to
overcome the limitation of HMR framework.
In [8] addressed Hadoop memory management issues adopting

global memory management technique. For attaining global
memory management multi-thread execution engine is used. There
model improves the memory utilization and balanced the
performance of I/O and CPU. However, they did not considered the
network I/O performance into consideration. Then, [9] presented a
GPU based design to overcome linear scalability issue of Hadoop.
They addressed the challenges existed in integrating HMR and
GPU and how the MR job can be executed using CUDA based

GPU. Further, [11] presented Cloud MapReduce (CMR)
framework to address issue pertaining to sequential execution. The
model offers parallel execution of Map and Reduce phase.
However, no theoretical justification of model is given.
The exiting HMR based model does not offers job with deadline
requirement on HDInsight cloud. Computing task deadline is a
challenging task. Therefore, makespan modelling is considered to
be a key performance component to compute amount of resource

required to meet task deadline. In HMR, the first wave of shuffle
phased is initialized in parallel fashion with Map phase (i.e.
overlapping phase) and rest of the waves of the Shuffle phase are
processed post completion of Map phase (i.e. non-overlapping
phase). In [14] and [15] presented a makespan model for HMR to
utilize cloud resource efficiently. However, they incurs computing
overhead due to inaccurate estimation. Since they did not
considered overlapping and non-overlapping phases of the Shuffle

stage. Then, [16] presented a job prediction and optimization model
namely Starfish. The model collected information of active Hadoop
task profile at a satisfactory granularity. In [17], presented a model
namely Elasticiser. The model enhanced the approach presented in
[16] by adding resource allocation based on VMs. However, it
incurs large overhead in collecting Hadoop task profile. As a result,
attain high over-predicted task run-time. Further, [18], [19], and
[20] used both overlapping and non-overlapping phases of shuffle

stage and for task prediction a conventional linear regression
method is utilized. CRESP [21] predicts task execution efficiently
and aid in allocating resources based on MR slots. However, in
CRESP models, the effect of number of reduced jobs are discarded.
In [20] and [21], the number of reduced jobs are constant. As a
result, incurs higher I/O disk seek. Thus, affecting resource
utilization.
From above analysis it is quite evident Hadoop suffers from

number of drawback in utilizing resource efficiently and accurate
modelling of job makespan/estimation model. Therefore,
minimizing execution time and utilizing resource efficiently with
minimal costs is most desired of cloud based computing model. To
attain this objective a Hybrid Parallel Dual Computing (HDPC)
framework is presented in this manuscript. The HDPC framework
adopts parallel execution among Map and Reduce phase similar to
[11] i.e., reduce phase is initiated as soon as two or more Map task

is completed. This usage of such strategy aid utilizing resource
efficiently (i.e.., reduction of unutilized computing node resources).
Further, this work consider parallel execution of Map and reduce
operation using multi-core environment available with computing
nodes. Lastly, presented a makespan model to describe function of
the HDPC framework.

The Contribution of research work is as follows:

 This work present an accurate makespan model for HDPC
aiding performance improvement.

 This work presented parallel execution design of Map and
Reduce phase.

 Further, to enhance resource utilization parallel execution of
map and reduce operation is carried out considering multi-core
environments available with virtual computing workers

 Experiments are conducted considering diverse cloud
configurations and varied application (stream and non-stream data)

configuration.

 Experiment outcome shows good correlation among theoretical
makespan model and experimental values.

The rest of the paper is organized as follows. In section II the
proposed makespan modelling for Hybrid Dual Parallel Computing
framework is presented. In penultimate section experimental study
is carried out. The conclusion and future work is described in last
section.

2. Makespan Modelling for Hybrid Dual

Parallel Computing Framework

This work present an efficient makespan modelling for hybrid dual
parallel computing (HDPC) framework. The HDPC adopts similar
functionalities used in traditional MapReduce framework such as

HMR. Therefore, it composed of Map, Shuffle, Sort and Reduce
phase. For easiness, this work considers shuffle and reduce phase
together in reduce phase. Map phase reads the input from the client
and builds set of key value pairs as follows

 (1)

This constructed key and list of values are combined together in

reduce phase. Reduce phase takes intermediate key and process

and construct new set of values . The HDPC perform task/job

computation on multiple virtual computing node that forms
together as a computing cluster. Where one is master computing
node and others are slave computing worker nodes. The master
computing node distribute and assign task to different worker node

and monitors the task among worker computing nodes. Further, the
slave nodes updates its resource utilization information to the
master node in a periodically manner. Master nodes schedule the
task based on resource (worker) availability.
To reduce execution time for completing job and maximizing
resource utilization of cloud platform, proposed HDPC framework
adopts parallel execution strategy. That is, reduce phase is
initialized in parallel when two or more map worker completes its

tasks. This work adopts parallel execution of reduce phase using
multi-core environment. Since the worker node considered to
possess more than one computing cores. Further, this work present
HDPC makespan model in subsection a.
The HDPC framework is combination of map and reduce job. Here
firstly, the input data is segmented in to set of uniform block size of
data, namely represented as chunks. These chunks are distributed
among the virtual computing workers. Further, these chucks are

further segmented to parallelize computation based on user defined
map and reduce operation. User defined Mapper operation are
applied to the input and intermediate output is built. These
intermediate output is the input for the reduce job. Reduce phase is
composed of shuffle and reduce stage. Output of map task is fed as
input for shuffle stage, already completed map jobs is shuffled and
then sort operation is performed. Post sorting, the sort data is fed
into user defined reduce operation and output is generated and is
written to cloud computing storage.

A map operation in terms of input/ output data dependencies and
makespan or computing time can be expressed as a tuple as follows

580 International Journal of Engineering & Technology

 (2)

where
 is mean input data used by each Map computing node for

processing, is ratio among output and input (i.e., output of Map

operation stored on cloud for reduce worker to process),
 depicts the maximum, mean and minimum

makespan time of Map operation. Similarly, HDPC reduce
operation is expressed as follows

 (3)

where is the output data of map operations placed in cloud

storage (expressed as a ratio), depicts the task assigned to HPDC

or reduce operation (which is a ratio of reduce output to input),
 depicts the maximum, mean and minimum

makespan time of Reduce operation. The Reduce stage is composed
of shuffle and sort functions.

Minimizing makespan or computing time and cost of cloud usage is
most desired. In this work we presented a makespan model to
express functions of HDPC framework. Estimating accurate
makespan time (job completion time) is very challenging, difficulty
and complex. The makespan time estimation depends on number of
factor such as network condition, data transfer rates, hardware
parameters, virtual computing cluster node performance, cloud
storage parameters and so on. In this work, HDPC only considers

functional modification to enhance performance of traditional
MapReduce frameworks. The makespan model presented in this
work is based on model presented in [22].

2.1. Makespan Modelling Limit Computations

This section describes makespan modeling limit computation. Here
makespan operation is evaluated as time needed to finish a job of
input with respect to number of resource assigned to HDPC. Let

consider a job to be processed on the HDPC cloud computing

framework considering input data . Let the cloud platform poses
 number of workers or nodes. Each nodes is composed of

cores that can be used for processing. One node act as a master

worker node to process and remaining number of nodes to

carryout Map and Reduce computation. Job is considered to be
distributed and processed utilizing number of Map and Reduce

tasks. The input data is segmented into chunks expressed as .
In traditional MR framework is computed as follows

 (4)

HDPC also adopts similar methodology for evaluating . The time

taken to finish task is depicted as . In HDPC

framework the chunks is further split to attain parallel

computation which is expressed as follows

�′′=�′� (5)

In HDPC computation of task is expressed as follows

 (6)

where depicts processing of task on computing core with

respect to data .
The maximum time () taken by task to finish job is expressed

as follows

 (7)

Similarly, the mean time () taken by task to finish job is

expressed as follows

(8)

Let consider an optimistic condition, that task are distributed

uniformly across worker (minimum time needed to complete
 job). The total time required to process these task and its

lower limits time is expressed as follows

 (9)

Similarly, we computed the upper limit considering pessimistic

condition, i.e., the longest completion time of task
 with execution time of is last completed task.

Then, the time engaged before completion of last task is upper

limited as follows

(10)

The likable job execution time varies due to non-deterministic and
scheduling is attained by variance of lower and upper limit. This is
critical performance parameter when time taken of longest task is

small as compared to the total makespan i.e.

 .

Therefore, the total execution for the longest task is upper

limited as follows

(11)

2.2. Makespan of Job on HDPC Framework

This section present job execution time of HDPC framework.
Firstly, let consider a job which is submitted by user to HDPC

framework. The job is segmented into
 number of Map task

and number of Reduce task is depicted as
 . Let

 depicts the

number of Map nodes assigned for the job and
 depicts the

number of Reduce nodes assigned for the job. To estimate the
computing time of map task, upper and lower limits is evaluated.
Using Eq. (7) and (8) maximum and mean computation time of
Map tasks of is evaluated. Using and computed in

Eq. (9) lower limits of Map stage is expressed as follows

(12)

Similarly, we compute the maximum makespan time of Map stage
or upper limit in HDPC using eq. (11) is expressed as follows

(13)

Using eq. (12) and (13) this work evaluated the total execution time
of Map stage in HDPC as follows

International Journal of Engineering & Technology 581

(14)

The mean execution time of each map virtual computing node is
estimated as follows

(15)

The Reduce stage is initiated post completion minimum two map
task is completed by map worker (i.e., the reduce stage is started

at

 time instance. The output of Map stage

generates set of intermediate output which is later fed into user
defined shuffle, sort and reduce operations. The maximum and

mean computing time of Reduce stage considering
 computing

nodes is expressed using Eq. (7) and (8). The total execution time

limit of Reduce stage that is the lower limit
 is evaluated as

follows

(16)

and similarly, the upper limit
 is evaluated as follows

(17)

The total execution time of job in HDPC platform is a sum of
time engaged to compute Map tasks and time engaged to compute
Reduce tasks. This work consider lower limits (i.e., best case
scenario), the minimum execution time is expressed as follows

 (18)

The Eq. (18) is simplified as follows

 (19)

Further, this work considers worst case scenario (maximum
execution time taken or upper limit) for computing which is
expressed as follows

 (20)

The Eq. (20) is simplified as follows

 (21)

The total execution time of on HDPC platform is expressed as

follows

(22)

Using Eq. (19) and (21), the total execution time is computed as
follows

(23)

2.3. Data Dependency Modelling on Total Execution

Time on HDPC Framework

This section present data dependency modelling on total execution
time on HDPC framework. This work adopt a similar approach
presented in [21], [22], and [23] to model data dependency using

linear regression. Therefore, the mean execution time of the

map computing node is expressed as follows

(24)

where
 depicts parameter that are dependent on map operation

of user i.e., they are application dependent. Therefore, the mean

execution time of the reduce computing worker is expressed as
follows

(25)

where
 depicts parameter that are dependent on reduce of user

operation and depicts intermediate output data collected from

Map stage. For parallel execution realization and to utilize resource
efficiently it is further segment similar to Map stage. On similar
lines maximum and mean makespan of map and reduce workers is
evaluated. Data dependent estimations
of are utilized in (19), (21) and (23) to

estimate total execution time of job on HDPC platform

considering data . More detail of proof and modeling of data

dependency using linear regression can be obtained from [21] and
[23]. The proposed makespan modeling for HDPC framework
presented in this paper is accurate and efficient which is
experimentally proven in next section.

3. Result and Annalysis

This section present performance evaluation of proposed HDPC
framework over stat-of-art HMR framework [18]. This paper
considers HMR framework for comparison. Since it is widely used
MR platform for computing on cloud computing environments
[24]. HDPC is developed using C#.net framework 4.0, C++
programming language and Node.js. HDPC is deployed on azure
cloud computing platform for performance evaluation on larger

data. The HDPC framework is deployed on Azure cloud computing
environment. The HDPC cluster is composed of one master and
four cloud computing node. Each computing node is deployed
using A3 instance virtual computing instance which is composed 4
computing cores, 7 GB Ram and 120 GB of HDD storage space.
Same cluster configuration for both HMR and OHMR is considered
for experiment analysis. This work considers experiment analysis
considering both stream and non-stream application. For stream

analysis Word frequency statistic computation is considered and for
non-stream analysis Hot-word detection computation is considered.

3.1. Non-stream Data Analysis Performance Evaluation

of HDPC over HMR

This section carryout performance evaluation of non-stream
application on HDPC and HMR framework. The word frequency
statistic application is considered and is developed using C#

582 International Journal of Engineering & Technology

programming language. For performance evaluation Wikipedia
dataset [25], [32] is considered. The Microblog dataset is composed

of data greater than 30 GB. For experiment analysis this work split
data into 4086 MB, 8192 MB, 16384 MB, and 32768 MB (i.e.,
around 16 GB of data is considered) is stored in Azure blob storage
container. The word frequency test [21], [26] is carried out on
stored data on both HMR and HDPC and result are noted as shown
in Fig. 2. The outcomes shows an execution time reduction of
47.98%, 46.9%, 49.02%, and 54.16% is achieved by HDPC over
HMR considering non-stream data size of 4086 MB, 8192 MB,

16384 MB, and 32768 MB respectively. An average execution time
reduction of 49.51% is attained by proposed HDPC over exiting
HMR considering varied non-stream data size.

 Theoretical execution time of HDPC i.e., given in Eq. (23) is

computed and is compared against the experimented value attained
considering varied non-stream data size. Result attained is shown in
Fig. 3. Slight variation is seen from practical and theoretical job
execution computation. Overall good correlation is seen among
theoretical and practical execution time. From experiment outcome
it is clear execution of non-stream data analysis on proposed HDPC
framework attain superior performance when compared with HMR

framework. Accuracy and correctness of theoretical job execution
model of HDPC framework presented is proved through correlation
measures.

Fig. 2: Non-stream data analysis total execution time observed for varied

data size conducted on HDPC and HMR frameworks

Fig. 3: Correlation between theoretical and practical execution time for

varied non-stream data analysis on HDPC framework

3.2. Stream Data Analysis Performance Evaluation of

HDPC over HMR

This section carryout performance evaluation of stream application
on HDPC and HMR framework. The hot word detection
application [26] is considered and is developed using C#
programming language. For performance evaluation The
“Movietweetings” dataset [27] is considered. For experiment
analysis this work considers stream tweet size of 25K, 50K, 75K,

and 100K and is stored in Azure blob storage container. The hot
word detection test is carried out on stored data on both HMR and
HDPC and result are noted as shown in Fig. 4. The outcomes shows
an execution time reduction of 56.63%, 46.84%, 62.65%, and
56.51% is achieved by HDPC over HMR considering stream data
size of 25K, 50K, 75K, and 100K respectively. An average
execution time reduction of 55.66% is attained by proposed HDPC
over exiting HMR considering varied stream data size.

 Theoretical execution time of HDPC i.e., given in Eq. (23) is
computed and is compared against the experimented value attained
considering varied stream data size. Result attained is shown in Fig.

5. Slight variation is seen from practical and theoretical job
execution computation. Overall good correlation is seen among
theoretical and practical execution time. From experiment outcome
it is clear execution of non-stream data analysis on proposed HDPC
framework attain superior performance when compared with HMR
framework. Accuracy and correctness of theoretical job execution
model of HDPC framework presented is proved through correlation
measures.

Fig. 4: Stream data analysis total execution time observed for varied data

size conducted on HDPC and HMR frameworks

0

50

100

150

200

250

300

4096 MB 8192 MB 16384 MB 32768 MB

E
x

ec
u

ti
o
n

 t
im

e
(s

)

Wikipedia non-stream data size

Job execution time observed considering

varied non-stream data size

HMR

HDPC

0

20

40

60

80

100

120

140

4096 MB 8192 MB 16384 MB 32768 MB

E
x
ec

u
ti

o
n

 t
im

e
(s

)

Wikipedia non-stream data size

Job execution time observed considering

varied non-stream data size

HDPC

HDPC-Theory

0

20

40

60

80

100

120

25K 50K 75K 100K

E
x

ec
u

ti
o
n

 t
im

e
(s

)

Number of twitter feeds considered

Job execution time observed considering

varied stream size

HMR

HDPC

0

20

40

60

80

100

120

140

25K 50K 75K 100K

E
x

ec
u
ti

o
n

 t
im

e
(s

)

Number of twitter feeds considered

Job execution time observed considering

varied stream data size

HDPC

HDPC-Theory

International Journal of Engineering & Technology 583

Fig. 5: Correlation between theoretical and practical execution time for

varied stream data analysis on HDPC framework

3.3. Gene Sequence Analysis Performance Evaluation of

HDPC over HMR

This section carryout performance evaluation of gene sequence
analysis [18] on HDPC and HMR framework. Application related

to Cancer research, Genetic Diseases identification, Reproductive
Health and so on are dependent sequence alignment algorithms for
analysis. This work used Homo sapiens chromosome
(NC_000015.10) and bakers yeast genomic database as reference
database obtained from [29] and the query sequences obtained from
the influenza virus database [30]. The detail of query and reference
genome used for experiment analysis is described in Table I. Gene
sequence analysis is performed on query and reference genome

used in Table I and the result are graphically plotted in Fig. 6.The
experiment outcome shows an execution time reduction of 64.37%,
52.92%, 60.08%, 47.6%, and 44.83% is achieved by HDPC over
HMR considering genomic data size of 4988 bp, 10207 bp, 15131
bp, 576874 bp, and 948066 bp respectively. An average execution
time reduction of 53.96% is attained by proposed HDPC over
exiting HMR considering varied genomic data size.

 Theoretical execution time of HDPC i.e., given in Eq. (23) is

computed and is compared against the experimented value attained
considering varied genomic data size. Result attained is shown in
Fig. 7. Slight variation is seen from practical and theoretical job

execution computation. Overall good correlation is seen among
theoretical and practical execution time. From experiment outcome
it is clear execution of gene sequence (bioinformatics) analysis on
proposed HDPC framework attain superior performance when
compared with HMR framework. Accuracy and correctness of
theoretical job execution model of HDPC framework presented is
proved through correlation measures.

Table 1: Gene sequence considered for experiment analysis

Reference genome sequence

Seque

nce

lengt

h

Query genome

sequence

Sequ

ence

lengt

h

NC_000015.10 10199

1189

bp

NC 026141.2 4988

base

pair

NC_000015.10 10199

1189

bp

NC 010955.1 1020

7

base

pair

NC_000015.10 10199

1189

bp

NC 015123.1 1513

1

base

pair

Saccharomyces cerevisiae

S288c chromosome XII

10019

33 bp

Saccharomyces

cerevisiae

S288c chromosome

V_BK006939.2

5768

74

base

pair

Saccharomyces cerevisiae

S288c chromosome XII

10019

33 bp

Saccharomyces

cerevisiae

S288c chromosome

XVI_BK006949.2

9480

66

base

pair

Fig. 6: Genomic sequence analysis total execution time observed for

varied genome data size conducted on HDPC and HMR frameworks

Fig. 7: Correlation between theoretical and practical execution time for

varied genome data analysis on HDPC framework

3.4. E-commerce Data Analysis Performance Evaluation

of HDPC over HMR

This section carryout performance evaluation of E-commerce data
analysis on HDPC and HMR framework. For experiment analysis
Wordcount (Text computation/mining) application [21] is used.

Amazon product data [31] is used for experiment analysis which
composed of 142.8 million reviews spanning May 1996 - July
2014. However, this work considers the experiment case shown in
Table II. Wordcount analysis is performed on Amazon review
dataset and result is graphically shown in Fig. 8.

The experiment outcome shows an execution time reduction of
47.4%, 50.98%, 49.09%, and 55.64% is achieved by HDPC over

HMR considering review data size of 2,982,326, 3,268,695,
3,447,249, and 5,748,920 respectively. An average execution time
reduction of 50.77% is attained by proposed HDPC over exiting
HMR considering varied review data size.

 Theoretical execution time of HDPC i.e., given in Eq. (23) is

computed and is compared against the experimented value attained
considering varied amazon review data size. Result attained is
shown in Fig. 9. Slight variation is seen from practical and
theoretical job execution computation. Overall good correlation is
seen among theoretical and practical execution time. From
experiment outcome it is clear execution of Wordcount (text
computing/mining) analysis on proposed HDPC framework attain

superior performance when compared with HMR framework.
Accuracy and correctness of theoretical job execution model of
HDPC framework presented is proved through correlation
measures.

Table 2: E-commerce data considered for experiment analysis

0

50

100

150

200

250

300

4988 bp 10207 bp 15131 bp 576874 bp 948066 bp

E
x
ec

u
ti

o
n

 t
im

e
(s

)

Genome data size in base pair (bp)

Job execution time observed considering

varied gene sequence data

HMR

HDPC

0

20

40

60

80

100

120

140

160

4988 bp 10207 bp 15131 bp 576874

bp

948066

bp

E
x

ec
u

ti
o
n

 t
im

e
(s

)

Genome data size in base pair (bp)

Job execution time observed considering

varied gene sequence data

HDPC

HDPC-Theory

584 International Journal of Engineering & Technology

Experime

nt ID Dataset

Number

of

reviews

Number of

product

1 Health and personal

cares

2,982,32

6

263,032

2 Sports and outdoors 3,268,69

5

532,197

3 Cellphones and

accessories

3,447,24

9

346,793

4 Clothing shoes and

jewelry

5,748,92

0

1,503,384

Fig. 8: Stream data analysis total execution time observed for varied

genome data size conducted on HDPC and HMR frameworks

Fig. 9: Correlation between theoretical and practical execution time for

varied genome data analysis on HDPC framework

3.5. Result Comparison of HDPC with state-of-art

Technique

In this section the execution of the stream and non-stream

applications namely word frequency statistics and hot word
detection respectively is presented. The results presented here prove
that the HDPC framework reduces the total job execution attained
due to the proposed makespan model considering hybrid
parallelization.
An average job execution time reduction of 49.51%, 55.66%,
53.97%, and 50.7% is attained by proposed HDPC over exiting
HMR [11] for non-stream application, stream application,

bioinformatics application, and text computing/mining application
respectively. The comparative analysis over state-of-art technique
is tabulated in Table III shows the efficiency of HDPC over state-
of-art technique in terms of robustness and scalability. Since,

HDPC support execution of stream, non-stream, bioinformatics and
text mining application over cloud platforms. Our HDPC job

makespan/execution model aided in better cloud resource
utilization. Theoretical comparison evaluation is considered and
attained better result when compared with [19] and [21]. Adoption
of cloud platform aid in providing scalable processing of huge
amount of stream and non-stream data of various types on large
computing clusters. All these feature attributed to the performance
improvement of HDPC over state-of-art models.

Table 3: Comparson with state of art technique

[11

]

[18

]
[19

]

[20

]

[21

]

[28

]

H

DP

C

MapReduce platform

considered

Cu

sto

m

Ha

do

op

Ha

do

op

Ha

do

op

Ha

do

op

Ha

do

op

Cu

sto

m

Cloud support for

MapReduce execution

Ye

s

Ye

s

No Ye

s

Ye

s

No Ye

s

Support both stream and

non-stream application

Ye

s

No No No No No Ye

s

Support execution of text

mining application

Ye

s

No Ye

s

Ye

s

Ye

s

Ye

s

Ye

s

Support execution of

bioinformatics

application

No Ye

s

No No No No Ye

s

Makespan accuracy

evaluation considered

No No Ye

s

No Ye

s

No Ye

s

Hybrid parallelization

considered

No No No No No No Ye

s

Parallelization under

multi-core environment

No No No No No No Ye

s

Parallelization of

MapReduce phase

Ye

s

No No No No No Ye

s

MapReduce Platform

adopted

Ye

s

Ye

s

Ye

s

Ye

s

Ye

s

Ye

s

Ye

s

Average percentage

improvement over HMR

framework

30.

0%

40.

28

%

13.

33

%

34.

83

%

27.

7%

43.

91

%

52.

58

%

4. Conclusion

This paper discussed about the significance of cloud computing
framework. Further, disused the working process Hadoop
MapReduce framework and highlighted the drawback and
limitation of HMR. Further, to utilize resource efficiently and
minimize execution time this manuscript introduced HDPC

framework on cloud computing platform. HDPC offers parallel
execution of Map and Reduce phase. To further enhance resource
utilization parallel execution of map and reduce operation is carried
out considering multi-core environments available with virtual
computing workers. Lastly, this work presented job makespan/
execution model and working structure of HDPC framework.
Experiment are conducted on Microsoft Azure HDInsight cloud
platform considering stream and non-stream application to evaluate

performance of HDPC framework over existing computing model.
The outcome shows an average makespan/execution time
performance improvement of 49.51%, 55.66%, 53.97%, and 50.7%
considering non-stream application, stream application,
bioinformatics application, and text computing/mining application,
respectively. Overall good correlation is seen among practical
execution and theoretical execution outcome shows proposed
HDPC framework is robust, scalable, cost efficient and support

dynamic analysis on cloud computing environment. The future
work would consider performance evaluation of HDPC framework
considering more diverse application applications and datasets.

References

[1] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa, “Phoenix: a

parallel programming model for accommodating dynamically

joining/leaving resources,” in SIGPLAN Not., vol. 38, no. 10, pp.

216–229, 2003.

0

20

40

60

80

100

120

140

2,982,326 3,268,695 3,447,249 5,748,920

E
x
ec

u
ti

o
n

 t
im

e
(s

)

Review size

Job execution time observed considering

varied review size

HMR

HDPC

0

10

20

30

40

50

60

2,982,326 3,268,695 3,447,249 5,748,920

E
x

ec
u

ti
o
n

 t
im

e
(s

)

Review size

Job execution time observed considering

varied review size

HDPC

HDPC-Theory

International Journal of Engineering & Technology 585

[2] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a

MapReduce framework on graphics processors,” in Proceedings of

the 17th international conference on Parallel architectures and

compilation techniques - PACT ’08, p. 260, 2008.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,”

ACM SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar.

2007.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.

Stoica,“Spark: Cluster Computing with Working Sets,” in

Proceedings of the 2nd USENIX Conference on Hot topics in Cloud

Computing, (Boston,MA), June 2010.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” ACM Commun., vol. 51, no. 1, pp.

107–113, Jan. 2008.

[6] “Apache Hadoop.” [Online]. Available: http://hadoop.apache.org/.

[Accessed: 21-july-2018].

[7] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: Mining

Peta-scale Graphs,” Knowl. Inf. Syst., vol. 27, no. 2, pp. 303–325,

May 2011.

[8] X. Shi et al., "Mammoth: Gearing Hadoop Towards Memory-

Intensive MapReduce Applications," in IEEE Transactions on

Parallel and Distributed Systems, vol. 26, no. 8, pp. 2300-2315,

Aug. 1 2015.

[9] J. Zhu, J. Li, E. Hardesty, H. Jiang and K. C. Li, "GPU-in-Hadoop:

Enabling MapReduce across distributed heterogeneous platforms,"

Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th

International Conference on, Taiyuan, pp. 321-326, 2014.

[10] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz and I. Stoica,

&ldquo,Improving Mapreduce Performance in Heterogeneous

Environments,&rdquo, Proc. Eighth USENIX Conf. Operating

Systems Design and Implementation (OSDI), pp. 29-42, 2008.

[11] D. Dahiphale et al., "An Advanced MapReduce: Cloud MapReduce,

Enhancements and Applications," in IEEE Transactions on Network

and Service Management, vol. 11, no. 1, pp. 101-115, March 2014.

[12] E. Deelman, G. Singh, M. Livny, B. Berriman and J. Good, "The

cost of doing science on the cloud: The Montage example," 2008

SC - International Conference for High Performance Computing,

Networking, Storage and Analysis, Austin, TX, pp. 1-12, 2008.

[13] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and

C. Krintz, “See spot run: using spot instances for mapreduce

workflows,” in Proc. 2010 USENIX Conference on Hot Topics in

Cloud Computing, ser. HotCloud’10. USENIX Association, pp. 7–

7, 2010.

[14] X. Lin, Z. Meng, C. Xu, and M. Wang, “A Practical Performance

Model for Hadoop MapReduce,” in Cluster Computing Workshops

(CLUSTER WORKSHOPS), 2012 IEEE International Conference

on, pp. 231–239, 2012.

[15] X. Cui, X. Lin, C. Hu, R. Zhang, and C. Wang, “Modeling the

Performance of MapReduce under Resource Contentions and Task

Failures,” in Cloud Computing Technology and Science

(CloudCom), 2013 IEEE 5th International Conference on, vol. 1,

pp. 158–163, 2013.

[16] M. Khan, Y. Liu and M. Li, "Data locality in Hadoop cluster

systems," 2014 11th International Conference on Fuzzy Systems

and Knowledge Discovery (FSKD), Xiamen, pp. 720-724, 2014.

[17] M. Xu, S. Alamro, T. Lan and S. Subramaniam, "CRED: Cloud

Right-Sizing with Execution Deadlines and Data Locality," in IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 12,

pp. 3389-3400, 2017.

[18] H. Alshammari, J. Lee and H. Bajwa, "H2Hadoop: Improving

Hadoop Performance using the Metadata of Related Jobs," in IEEE

Transactions on Cloud Computing, vol. PP, no. 99, pp. 1-1, 2016.

[19] Daria Glushkova, Petar Jovanovic, Alberto Abelló, “MapReduce

Performance Models for Hadoop 2.x”, in Workshop Proceedings of

the EDBT/ICDT 2017 Joint Conference, ISSN 1613-0073, 2017.

[20] M. Ehsan, K. Chandrasekaran, Y. Chen and R. Sion, "Cost-Efficient

Tasks and Data Co-Scheduling with AffordHadoop," in IEEE

Transactions on Cloud Computing, vol. PP, no. 99, pp. 1-1, 2017.

[21] M. Khan, Y. Jin, M. Li, Y. Xiang and C. Jiang, "Hadoop

Performance Modeling for Job Estimation and Resource

Provisioning," in IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 2, pp. 441-454, 2016.

[22] Z. Zhang, L. Cherkasova and B. T. Loo, "Optimizing cost and

performance trade-offs for MapReduce job processing in the cloud,"

2014 IEEE Network Operations and Management Symposium

(NOMS), Krakow, 2014, pp. 1-8.

[23] K. Chen, J. Powers, S. Guo and F. Tian, "CRESP: Towards Optimal

Resource Provisioning for MapReduce Computing in Public

Clouds," in IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 6, pp. 1403-1412, June 2014.

[24] T. White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[25] Kajdanowicz, T.; Indyk, W.; Kazienko, P.; Kukul, J., "Comparison

of the Efficiency of MapReduce and Bulk Synchronous Parallel

Approaches to Large Network Processing," Data Mining

Workshops (ICDMW), 2012 IEEE 12th International Conference

on , vol., no., pp.218,225, 10-10 Dec. 2012.

[26] Changjian Wang; Yuxing Peng; Mingxing Tang; Dongsheng Li;

Shanshan Li; Pengfei You, "MapCheckReduce: An Improved

MapReduce Computing Model for Imprecise Applications," Big

Data (BigData Congress), 2014 IEEE International Congress on ,

vol., no., pp.366,373, June 27 2014-July 2 2014.

[27] S. Dooms, T. De Pessemier, and L. Martens, “Movietweetings: a

movie rating dataset collected from twitter,” in Workshop on

Crowdsourcing and Human Computation for Recommender

Systems, CrowdRec at RecSys, vol. 13, 2013.

[28] Khan, M., Huang, Z., Li, M., Taylor, GA., – Optimizing Hadoop

parameter settings with gene expression programming guided PSO.

Concurrency Computation: Practice and Experience, DOI:

10.1002/cpe.3786, 2016.

[29] Saccharomyces genome database (SGD). (2015). [Online]

Available: http://www.yeastgenome.org/

[30] Influenza Virus Resource. (2015). [Online] Available:

http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html.

[31] Amazon product dataset “http://jmcauley.ucsd.edu/data/amazon/”,

last accessed sep 2, 2018.

[32] R. M. Esteves and C. Rong, "Using Mahout for Clustering

Wikipedia's Latest Articles: A Comparison between K-means and

Fuzzy C-means in the Cloud," 2011 IEEE Third International

Conference on Cloud Computing Technology and Science, Athens,

pp. 565-569, 2011.

