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Abstract 
 
MapReduce (MR) is the most widely adopted and used computing platform for processing complex scientific and data intensive 
application. Hadoop MapReduce (HMR) is widely used MR framework across various organization due to its open source nature. Cloud 
service provider (CSP) such Azure HDInsight offers computing resources to its user and only pays for their use. MapReduce framework 
currently been used are not efficient due to sequential computing of Map and Reduce phase. As a result, incurs higher computing cost and 
exhibit underutilization of cloud resources. Minimizing cost of execution on such platform is most desired. To overcome research 
challenges, this work firstly present Hybrid Dual Parallel Computing (HDPC) framework. HDPC offers parallel computation of Map and 

Reduce phase. To further enhance resource utilization parallel execution of map and reduce operation is carried out considering multi-
core environments available with virtual computing workers. Lastly, this work presented job makespan/execution model and working 
structure of HDPC framework. Experiment are conducted on Microsoft Azure HDInsight cloud platform considering stream and non-
stream application to evaluate performance of HDPC framework over existing computing model. The outcome shows significant 
performance improvement in terms of execution time. Overall good correlation is seen among practical execution and theoretical 
execution outcome shows proposed HDPC framework is robust, scalable, cost efficient and support dynamic analysis on cloud computing 
environment. 
 
Keywords: Big data, Bioinformatics, Cloud computing, GPU, Hadoop, Linear regression, MapReduce, Multi-core, Parallel computing. 

 

1. Introduction 

Cloud computing play a major role for attaining scalable computing 
for scientific and data intensive application. The cloud computing 
adopts distributed architecture which is capable of processing large 
amount of data collected by various organization such as social 
network, sensor network, bioinformatics etc. Performing scalable 

computing on these unstructured data is most desired across 
organizations. The exiting model such as Phoenix [1], Mars [2] and 
Dryad [3], and Spark [4] are not efficient in performing in real-time 
analysis on continuous/stream data. Google came up with parallel 
computing architecture namely MapReduce framework [5] for 
performing real-time analysis for scientific and data intensive 
applications. Among all Hadoop MapReduce (HMR) [6] is the 
most widely used and adopted [7] framework due its open source 

nature and ease of deployment, and scalability. 
The HMR is composed of Map, Shuffle, Sort and Reduce phase. In 
Map phase it read all input data and divide it into chunks of small 
data and perform execution parallel across different virtual 
machine. Shuffle phase begins with completion of Map phase that 
collects the intermediate output from all the Map task. A sort 
operation is performed on the intermediate output of map phase. 
For simplicity sort and shuffle phases are cumulatively considered 

in the shuffle phase. Post completion Reduce phase is initialized. In 
this phase it reads the intermediate output and aggregate the user 
defined functional output and store it in Hadoop distributed file 
system (HDFS). Detail of Hadoop MapReduce execution can be 

obtained from [6]. The basic architecture of Hadoop MapReduce 
framework is shown in Fig. 1. 
 

 
Fig. 1: The architecture of Hadoop MapReduce framework  
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HMR framework suffers from number of drawback such as it 
incurs buffer concurrency among jobs and heavy disk read seeks. 
As a result, incurs I/O overhead and increase execution time [8]. 
Further, HMR scheduler does not considers performance parameter 
such memory requirement and multi core environment for linear 
scalability effecting performance [9] and also considers 
homogenous map execution time considering homogenously 
distributed data, which is not true [10]. As a result, cloud resource 

are not utilized efficiently [11]. HMR adopts serial execution 
strategy adopted i.e., post completion of Map phase reduce is 
initialized. As a result, incurs higher cloud expense and effects 
performance [12]. HMR does not offer flexible pricing [13], 
scalability issues due to cluster based nature of HMR and are not 
efficient for streaming data analysis [11]. Recently number of 
optimization and makespan approaches has be presented to 
overcome the limitation of HMR framework. 
In [8] addressed Hadoop memory management issues adopting 

global memory management technique. For attaining global 
memory management multi-thread execution engine is used. There 
model improves the memory utilization and balanced the 
performance of I/O and CPU. However, they did not considered the 
network I/O performance into consideration. Then, [9] presented a 
GPU based design to overcome linear scalability issue of Hadoop. 
They addressed the challenges existed in integrating HMR and 
GPU and how the MR job can be executed using CUDA based 

GPU. Further, [11] presented Cloud MapReduce (CMR) 
framework to address issue pertaining to sequential execution. The 
model offers parallel execution of Map and Reduce phase. 
However, no theoretical justification of model is given. 
The exiting HMR based model does not offers job with deadline 
requirement on HDInsight cloud. Computing task deadline is a 
challenging task. Therefore, makespan modelling is considered to 
be a key performance component to compute amount of resource 

required to meet task deadline. In HMR, the first wave of shuffle 
phased is initialized in parallel fashion with Map phase (i.e. 
overlapping phase) and rest of the waves of the Shuffle phase are 
processed post completion of Map phase (i.e. non-overlapping 
phase). In [14] and [15] presented a makespan model for HMR to 
utilize cloud resource efficiently. However, they incurs computing 
overhead due to inaccurate estimation. Since they did not 
considered overlapping and non-overlapping phases of the Shuffle  

 
stage. Then, [16] presented a job prediction and optimization model 
namely Starfish. The model collected information of active Hadoop 
task profile at a satisfactory granularity. In [17], presented a model 
namely Elasticiser. The model enhanced the approach presented in 
[16] by adding resource allocation based on VMs. However, it 
incurs large overhead in collecting Hadoop task profile. As a result, 
attain high over-predicted task run-time. Further, [18], [19], and 
[20] used both overlapping and non-overlapping phases of shuffle 

stage and for task prediction a conventional linear regression 
method is utilized. CRESP [21] predicts task execution efficiently 
and aid in allocating resources based on MR slots. However, in 
CRESP models, the effect of number of reduced jobs are discarded. 
In [20] and [21], the number of reduced jobs are constant. As a 
result, incurs higher I/O disk seek. Thus, affecting resource 
utilization. 
From above analysis it is quite evident Hadoop suffers from 

number of drawback in utilizing resource efficiently and accurate 
modelling of job makespan/estimation model. Therefore, 
minimizing execution time and utilizing resource efficiently with 
minimal costs is most desired of cloud based computing model. To 
attain this objective a Hybrid Parallel Dual Computing (HDPC) 
framework is presented in this manuscript. The HDPC framework 
adopts parallel execution among Map and Reduce phase similar to 
[11] i.e., reduce phase is initiated as soon as two or more Map task 

is completed. This usage of such strategy aid utilizing resource 
efficiently (i.e.., reduction of unutilized computing node resources). 
Further, this work consider parallel execution of Map and reduce 
operation using multi-core environment available with computing 
nodes. Lastly, presented a makespan model to describe function of 
the HDPC framework.    

The Contribution of research work is as follows: 

 This work present an accurate makespan model for HDPC 
aiding performance improvement. 

 This work presented parallel execution design of Map and 
Reduce phase. 

 Further, to enhance resource utilization parallel execution of 
map and reduce operation is carried out considering multi-core 
environments available with virtual computing workers 

 Experiments are conducted considering diverse cloud 
configurations and varied application (stream and non-stream data) 

configuration. 

 Experiment outcome shows good correlation among theoretical 
makespan model and experimental values. 

The rest of the paper is organized as follows. In section II the 
proposed makespan modelling for Hybrid Dual Parallel Computing 
framework is presented. In penultimate section experimental study 
is carried out. The conclusion and future work is described in last 
section.   

2. Makespan Modelling for Hybrid Dual 

Parallel Computing Framework   

This work present an efficient makespan modelling for hybrid dual 
parallel computing (HDPC) framework. The HDPC adopts similar 
functionalities used in traditional MapReduce framework such as 

HMR. Therefore, it composed of Map, Shuffle, Sort and Reduce 
phase. For easiness, this work considers shuffle and reduce phase 
together in reduce phase. Map phase reads the input from the client 
and builds set of key value pairs as follows 
 

        
           

                                                        (1) 

 
This constructed key    and list of values are combined together in 

reduce phase. Reduce phase takes intermediate key    and process 

and construct new set of values      . The HDPC perform task/job 

computation on multiple virtual computing node that forms 
together as a computing cluster. Where one is master computing 
node and others are slave computing worker nodes. The master 
computing node distribute and assign task to different worker node 

and monitors the task among worker computing nodes. Further, the 
slave nodes updates its resource utilization information to the 
master node in a periodically manner. Master nodes schedule the 
task based on resource (worker) availability. 
To reduce execution time for completing job and maximizing 
resource utilization of cloud platform, proposed HDPC framework 
adopts parallel execution strategy. That is, reduce phase is 
initialized in parallel when two or more map worker completes its 

tasks. This work adopts parallel execution of reduce phase using 
multi-core environment. Since the worker node considered to 
possess more than one computing cores. Further, this work present 
HDPC makespan model in subsection a. 
The HDPC framework is combination of map and reduce job.  Here 
firstly, the input data is segmented in to set of uniform block size of 
data, namely represented as chunks. These chunks are distributed 
among the virtual computing workers. Further, these chucks are 

further segmented to parallelize computation based on user defined 
map and reduce operation. User defined Mapper operation are 
applied to the input and intermediate output is built. These 
intermediate output is the input for the reduce job. Reduce phase is 
composed of shuffle and reduce stage. Output of map task is fed as 
input for shuffle stage, already completed map jobs is shuffled and 
then sort operation is performed. Post sorting, the sort data is fed 
into user defined reduce operation and output is generated and is 
written to cloud computing storage. 

A map operation in terms of input/ output data dependencies and 
makespan or computing time can be expressed as a tuple as follows 
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                                                                 (2) 

where      
  is mean input data used by each Map computing node for 

processing,    is ratio among output and input (i.e., output of Map 

operation stored on cloud for reduce worker to process), 
                 depicts the maximum, mean and minimum 

makespan time of Map operation. Similarly, HDPC reduce 
operation is expressed as follows 
 

                                                                        (3) 

 
where    is the output data of map operations placed in cloud 

storage (expressed as a ratio),    depicts the task assigned to HPDC 

or reduce operation (which is a ratio of reduce output to input), 
                 depicts the maximum, mean and minimum 

makespan time of Reduce operation. The Reduce stage is composed 
of shuffle and sort functions. 

Minimizing makespan or computing time and cost of cloud usage is 
most desired. In this work we presented a makespan model to 
express functions of HDPC framework. Estimating accurate 
makespan time (job completion time) is very challenging, difficulty 
and complex. The makespan time estimation depends on number of 
factor such as network condition, data transfer rates, hardware 
parameters, virtual computing cluster node performance, cloud 
storage parameters and so on. In this work, HDPC only considers 

functional modification to enhance performance of traditional 
MapReduce frameworks. The makespan model presented in this 
work is based on model presented in [22]. 

2.1. Makespan Modelling Limit Computations 

This section describes makespan modeling limit computation. Here 
makespan operation is evaluated as time needed to finish a job of 
input with respect to number of resource assigned to HDPC. Let 

consider a job   to be processed on the HDPC cloud computing 

framework considering input data  . Let the cloud platform poses 
    number of workers or nodes. Each nodes is composed of   

cores that can be used for processing. One node act as a master 

worker node to process and remaining   number of nodes to 

carryout Map and Reduce computation. Job   is considered to be 
distributed and processed utilizing   number of Map and Reduce 

tasks. The input data   is segmented into   chunks expressed as   .  
In traditional    MR framework is computed as follows 

 

  

       
                                                                            (4) 

 

HDPC also adopts similar methodology for evaluating   . The time 

taken to finish   task is depicted as             . In HDPC 

framework the chunks    is further split to attain parallel 

computation which is expressed as follows 
 

�′′=�′� (5) 

 

In HDPC computation of     task is expressed as follows 

       

               

                                                (6) 

 

where    depicts processing of task on     computing core with 

respect to data    . 
The maximum time ( ) taken by   task to finish job   is expressed 

as follows 
 

     
 

                                                                  (7) 

 
Similarly, the mean time ( ) taken by   task to finish job   is 

expressed as follows 
 

  
   
 
   

 
 

(8) 

 
Let consider an optimistic condition, that   task are distributed 

uniformly across   worker (minimum time needed to complete 
      job). The total time required to process these task and its 

lower limits time is expressed as follows 
 

     
   

 
 (9) 

 
Similarly, we computed the upper limit considering pessimistic 

condition, i.e., the longest completion time of task     
               with execution time of   is last completed task. 

Then, the time engaged before completion of last task     is upper 

limited as follows 
 

    
 
    

 
 
       

 
 

(10) 

 
The likable job execution time varies due to non-deterministic and 
scheduling is attained by variance of lower and upper limit. This is 
critical performance parameter when time taken of longest task is 

small as compared to the total makespan i.e.      
 

 
 . 

Therefore, the total execution for the longest task     is upper 

limited as follows 
 

     
       

 
   

(11) 

2.2. Makespan of Job on HDPC Framework 

This section present job execution time of HDPC framework. 
Firstly, let consider a job   which is submitted by user to HDPC 

framework. The job   is segmented into   
  number of Map task 

and number of Reduce task is depicted as   
 . Let   

  depicts the 

number of Map nodes assigned for the     job and   
  depicts the 

number of Reduce nodes assigned for the     job. To estimate the 
computing time of map task, upper and lower limits is evaluated. 
Using Eq. (7) and (8) maximum and mean computation time of 
Map tasks of   is evaluated. Using      and       computed in 

Eq. (9) lower limits of Map stage is expressed as follows 
 

  
     

  
          

   
  

(12) 

 
Similarly, we compute the maximum makespan time of Map stage 
or upper limit in HDPC using eq. (11) is expressed as follows 
 

  
     

   
           

  
      

 
(13) 

 
Using eq. (12) and (13) this work evaluated the total execution time 
of Map stage in HDPC as follows 
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(14) 

 
The mean execution time of each map virtual computing node is 
estimated as follows 
 

         
 
     

  
  

(15) 

The Reduce stage is initiated post completion minimum two map 
task is completed by map worker (i.e., the reduce stage is started 

at    
        

      time instance. The output of Map stage 

generates set of intermediate output which is later fed into user 
defined shuffle, sort and reduce operations. The maximum and 

mean computing time of Reduce stage considering   
  computing 

nodes is expressed using Eq. (7) and (8). The total execution time 

limit of Reduce stage that is the lower limit   
     is evaluated as 

follows 

 

  
     

  
         

  
  

(16) 

and similarly, the upper limit   
     is evaluated as follows 

  
     

   
          

  
      

 
(17) 

The total execution time of     job in HDPC platform is a sum of 
time engaged to compute Map tasks and time engaged to compute 
Reduce tasks. This work consider lower limits (i.e., best case 
scenario), the minimum execution time is expressed as follows 

   
       

        
        

         
      (18) 

The Eq. (18) is simplified as follows 

   
        

        
       

     (19) 

Further, this work considers worst case scenario (maximum 
execution time taken or upper limit) for computing which is 
expressed as follows  

   
       

        
        

        
      (20) 

The Eq. (20) is simplified as follows 

   
       

         
     (21) 

The total execution time of   on HDPC platform is expressed as 

follows 

     
    

       
     

 
 

(22) 

Using Eq. (19) and (21), the total execution time is computed as 
follows 

     
    

         
          

        
       

      

 

 
    

        
        

       
     

 
 

(23) 

2.3. Data Dependency Modelling on Total Execution 

Time on HDPC Framework 

This section present data dependency modelling on total execution 
time on HDPC framework. This work adopt a similar approach 
presented in [21], [22], and [23] to model data dependency using 

linear regression. Therefore, the mean execution time of the     

map computing node is expressed as follows 

     
 

   
      

  
  

 
  

  
 

   

  

(24) 

where   
  depicts parameter that are dependent on map operation 

of user i.e., they are application dependent. Therefore, the mean 

execution time of the     reduce computing worker is expressed as 
follows 

     
 

   
      

  
  

 
  

  
 

   

  

(25) 

where   
  depicts parameter that are dependent on reduce of user 

operation and    depicts intermediate output data collected from 

Map stage. For parallel execution realization and to utilize resource 
efficiently it is further segment similar to Map stage. On similar 
lines maximum and mean makespan of map and reduce workers is 
evaluated. Data dependent estimations 
of                      are utilized in (19), (21) and (23) to 

estimate total execution time of     job on HDPC platform 

considering data  . More detail of proof and modeling of data 

dependency using linear regression can be obtained from [21] and 
[23]. The proposed makespan modeling for HDPC framework 
presented in this paper is accurate and efficient which is 
experimentally proven in next section. 

3. Result and Annalysis 

This section present performance evaluation of proposed HDPC 
framework over stat-of-art HMR framework [18].  This paper 
considers HMR framework for comparison. Since it is widely used 
MR platform for computing on cloud computing environments 
[24]. HDPC is developed using C#.net framework 4.0, C++ 
programming language and Node.js. HDPC is deployed on azure 
cloud computing platform for performance evaluation on larger 

data. The HDPC framework is deployed on Azure cloud computing 
environment. The HDPC cluster is composed of one master and 
four cloud computing node. Each computing node is deployed 
using A3 instance virtual computing instance which is composed 4 
computing cores, 7 GB Ram and 120 GB of HDD storage space. 
Same cluster configuration for both HMR and OHMR is considered 
for experiment analysis. This work considers experiment analysis 
considering both stream and non-stream application. For stream 

analysis Word frequency statistic computation is considered and for 
non-stream analysis Hot-word detection computation is considered.  

3.1. Non-stream Data Analysis Performance Evaluation 

of HDPC over HMR  

This section carryout performance evaluation of non-stream 
application on HDPC and HMR framework. The word frequency 
statistic application is considered and is developed using C# 
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programming language. For performance evaluation Wikipedia 
dataset [25], [32] is considered. The Microblog dataset is composed 

of data greater than 30 GB. For experiment analysis this work split 
data into 4086 MB, 8192 MB, 16384 MB, and 32768 MB (i.e., 
around 16 GB of data is considered) is stored in Azure blob storage 
container. The word frequency test [21], [26] is carried out on 
stored data on both HMR and HDPC and result are noted as shown 
in Fig. 2. The outcomes shows an execution time reduction of 
47.98%, 46.9%, 49.02%, and 54.16% is achieved by HDPC over 
HMR considering non-stream data size of 4086 MB, 8192 MB, 

16384 MB, and 32768 MB respectively. An average execution time 
reduction of 49.51% is attained by proposed HDPC over exiting 
HMR considering varied non-stream data size. 

 Theoretical execution time of HDPC i.e.,      given in Eq. (23) is 

computed and is compared against the experimented value attained 
considering varied non-stream data size. Result attained is shown in 
Fig. 3. Slight variation is seen from practical and theoretical job 
execution computation. Overall good correlation is seen among 
theoretical and practical execution time. From experiment outcome 
it is clear execution of non-stream data analysis on proposed HDPC 
framework attain superior performance when compared with HMR 

framework. Accuracy and correctness of theoretical job execution 
model of HDPC framework presented is proved through correlation 
measures. 

 

 
Fig. 2: Non-stream data analysis total execution time observed for varied 

data size conducted on HDPC and HMR frameworks  

 

 
Fig. 3: Correlation between theoretical and practical execution time for 

varied non-stream data analysis on HDPC framework  

3.2. Stream Data Analysis Performance Evaluation of 

HDPC over HMR  

This section carryout performance evaluation of stream application 
on HDPC and HMR framework. The hot word detection 
application [26] is considered and is developed using C# 
programming language. For performance evaluation The 
“Movietweetings” dataset [27] is considered. For experiment 
analysis this work considers stream tweet size of 25K, 50K, 75K, 

and 100K and is stored in Azure blob storage container. The hot 
word detection test is carried out on stored data on both HMR and 
HDPC and result are noted as shown in Fig. 4. The outcomes shows 
an execution time reduction of 56.63%, 46.84%, 62.65%, and 
56.51% is achieved by HDPC over HMR considering stream data 
size of 25K, 50K, 75K, and 100K respectively. An average 
execution time reduction of 55.66% is attained by proposed HDPC 
over exiting HMR considering varied stream data size. 

 Theoretical execution time of HDPC i.e.,      given in Eq. (23) is 
computed and is compared against the experimented value attained 
considering varied stream data size. Result attained is shown in Fig. 

5. Slight variation is seen from practical and theoretical job 
execution computation. Overall good correlation is seen among 
theoretical and practical execution time. From experiment outcome 
it is clear execution of non-stream data analysis on proposed HDPC 
framework attain superior performance when compared with HMR 
framework. Accuracy and correctness of theoretical job execution 
model of HDPC framework presented is proved through correlation 
measures. 
 

 
Fig. 4: Stream data analysis total execution time observed for varied data 

size conducted on HDPC and HMR frameworks  
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Fig. 5: Correlation between theoretical and practical execution time for 

varied stream data analysis on HDPC framework  

3.3. Gene Sequence Analysis Performance Evaluation of 

HDPC over HMR 

This section carryout performance evaluation of gene sequence 
analysis [18] on HDPC and HMR framework. Application related 

to Cancer research, Genetic Diseases identification, Reproductive 
Health and so on are dependent sequence alignment algorithms for 
analysis. This work used Homo sapiens chromosome 
(NC_000015.10) and bakers yeast genomic database as reference 
database obtained from [29] and the query sequences obtained from 
the influenza virus database [30]. The detail of query and reference 
genome used for experiment analysis is described in Table I. Gene 
sequence analysis is performed on query and reference genome 

used in Table I and the result are graphically plotted in Fig. 6.The 
experiment outcome shows an execution time reduction of 64.37%, 
52.92%, 60.08%, 47.6%, and 44.83% is achieved by HDPC over 
HMR considering genomic data size of 4988 bp, 10207 bp, 15131 
bp, 576874 bp, and 948066 bp respectively. An average execution 
time reduction of 53.96% is attained by proposed HDPC over 
exiting HMR considering varied genomic data size. 

 Theoretical execution time of HDPC i.e.,      given in Eq. (23) is 

computed and is compared against the experimented value attained 
considering varied genomic data size. Result attained is shown in 
Fig. 7. Slight variation is seen from practical and theoretical job 

execution computation. Overall good correlation is seen among 
theoretical and practical execution time. From experiment outcome 
it is clear execution of gene sequence (bioinformatics) analysis on 
proposed HDPC framework attain superior performance when 
compared with HMR framework. Accuracy and correctness of 
theoretical job execution model of HDPC framework presented is 
proved through correlation measures. 
 

Table 1: Gene sequence considered for experiment analysis  

Reference genome sequence  

Seque

nce 

lengt

h 

Query genome 

sequence 

Sequ

ence 

lengt

h 

NC_000015.10 10199

1189 

bp 

NC 026141.2 4988 

base 

pair 

NC_000015.10 10199

1189 

bp 

NC 010955.1 1020

7 

base 

pair 

NC_000015.10 10199

1189 

bp 

NC 015123.1 1513

1 

base 

pair 

Saccharomyces cerevisiae 

S288c chromosome XII 

10019

33 bp 

Saccharomyces 

cerevisiae 

S288c chromosome 

V_BK006939.2 

5768

74 

base 

pair 

Saccharomyces cerevisiae 

S288c chromosome XII 

10019

33 bp 

Saccharomyces 

cerevisiae 

S288c chromosome 

XVI_BK006949.2 

9480

66 

base 

pair 

 

 
Fig. 6: Genomic sequence analysis total execution time observed for 

varied genome data size conducted on HDPC and HMR frameworks  

 

 
Fig. 7: Correlation between theoretical and practical execution time for 

varied genome data analysis on HDPC framework  

3.4. E-commerce Data Analysis Performance Evaluation 

of HDPC over HMR  

This section carryout performance evaluation of E-commerce data 
analysis on HDPC and HMR framework. For experiment analysis 
Wordcount (Text computation/mining) application [21] is used. 

Amazon product data [31] is used for experiment analysis which 
composed of 142.8 million reviews spanning May 1996 - July 
2014. However, this work considers the experiment case shown in 
Table II. Wordcount analysis is performed on Amazon review 
dataset and result is graphically shown in Fig. 8.  
 
The experiment outcome shows an execution time reduction of 
47.4%, 50.98%, 49.09%, and 55.64% is achieved by HDPC over 

HMR considering review data size of 2,982,326, 3,268,695, 
3,447,249, and 5,748,920 respectively. An average execution time 
reduction of 50.77% is attained by proposed HDPC over exiting 
HMR considering varied review data size. 

 Theoretical execution time of HDPC i.e.,      given in Eq. (23) is 

computed and is compared against the experimented value attained 
considering varied amazon review data size. Result attained is 
shown in Fig. 9. Slight variation is seen from practical and 
theoretical job execution computation. Overall good correlation is 
seen among theoretical and practical execution time. From 
experiment outcome it is clear execution of Wordcount (text 
computing/mining) analysis on proposed HDPC framework attain 

superior performance when compared with HMR framework. 
Accuracy and correctness of theoretical job execution model of 
HDPC framework presented is proved through correlation 
measures. 
 

Table 2: E-commerce data considered for experiment analysis 
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Experime

nt ID Dataset  

Number 

of 

reviews 

Number of 

product 

1 Health and personal 

cares 

2,982,32

6 

263,032 

2 Sports and outdoors 3,268,69

5 

532,197 

3 Cellphones and 

accessories  

3,447,24

9 

346,793 

4 Clothing shoes and 

jewelry  

5,748,92

0 

1,503,384 

 

 
Fig. 8: Stream data analysis total execution time observed for varied 

genome data size conducted on HDPC and HMR frameworks  

 

 
Fig. 9: Correlation between theoretical and practical execution time for 

varied genome data analysis on HDPC framework  

3.5. Result Comparison of HDPC with state-of-art 

Technique 

In this section the execution of the stream and non-stream 

applications namely word frequency statistics and hot word 
detection respectively is presented. The results presented here prove 
that the HDPC framework reduces the total job execution attained 
due to the proposed makespan model considering hybrid 
parallelization.  
An average job execution time reduction of 49.51%, 55.66%, 
53.97%, and 50.7% is attained by proposed HDPC over exiting 
HMR [11] for non-stream application, stream application, 

bioinformatics application, and text computing/mining application 
respectively. The comparative analysis over state-of-art technique 
is tabulated in Table III shows the efficiency of HDPC over state-
of-art technique in terms of robustness and scalability. Since, 

HDPC support execution of stream, non-stream, bioinformatics and 
text mining application over cloud platforms. Our HDPC job 

makespan/execution model aided in better cloud resource 
utilization. Theoretical comparison evaluation is considered and 
attained better result when compared with [19] and [21]. Adoption 
of cloud platform aid in providing scalable processing of huge 
amount of stream and non-stream data of various types on large 
computing clusters. All these feature attributed to the performance 
improvement of HDPC over state-of-art models.  
 

 
Table 3:  Comparson with state of art technique 
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s 

Ye

s 

No Ye

s 

Support both stream and 

non-stream application  

Ye

s 

No No No No No Ye

s  

Support execution of text 

mining application 

Ye

s 

No Ye
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Ye
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Ye

s 

Ye
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Ye

s 

Support execution of 

bioinformatics 

application 

No Ye

s 

No No No No Ye

s 

Makespan accuracy 

evaluation considered  

No No Ye
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No Ye
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No Ye

s 

Hybrid parallelization 

considered 

No No No No No No Ye

s 

Parallelization under 

multi-core environment 

No No No No No No Ye

s 

Parallelization of 

MapReduce phase 

Ye

s 

No No No No No Ye

s 

MapReduce Platform 

adopted 

Ye

s 

Ye

s 

Ye

s 

Ye

s 

Ye
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Ye
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Ye

s 

Average percentage 

improvement over HMR 

framework 

30.

0% 

40.

28

% 

13.

33
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34.

83

% 

27.

7% 

43.

91

% 

52.

58

% 

4. Conclusion 

This paper discussed about the significance of cloud computing 
framework. Further, disused the working process Hadoop 
MapReduce framework and highlighted the drawback and 
limitation of HMR. Further, to utilize resource efficiently and 
minimize execution time this manuscript introduced HDPC 

framework on cloud computing platform. HDPC offers parallel 
execution of Map and Reduce phase. To further enhance resource 
utilization parallel execution of map and reduce operation is carried 
out considering multi-core environments available with virtual 
computing workers. Lastly, this work presented job makespan/ 
execution model and working structure of HDPC framework. 
Experiment are conducted on Microsoft Azure HDInsight cloud 
platform considering stream and non-stream application to evaluate 

performance of HDPC framework over existing computing model. 
The outcome shows an average makespan/execution time 
performance improvement of 49.51%, 55.66%, 53.97%, and 50.7% 
considering non-stream application, stream application, 
bioinformatics application, and text computing/mining application, 
respectively. Overall good correlation is seen among practical 
execution and theoretical execution outcome shows proposed 
HDPC framework is robust, scalable, cost efficient and support 

dynamic analysis on cloud computing environment. The future 
work would consider performance evaluation of HDPC framework 
considering more diverse application applications and datasets. 
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